Vulnerability Assessment Report Format
Data Model

Dr. D. Polemi
G. Valvis
Issues

- Attack paradigm
- Vulnerability exploit life cycle
- Vulnerability assessment process
- Challenges in vulnerability assessment process
- VARF data model
- Vulnerability diagram
- Conclusions
Information gathering
- Determination of the characteristics of the target network such as network topology, host OS type, listening services

Exploitation
- Compromise of a vulnerable host on the target network

Metastasis

Consolidation
- Remove any evidence of the exploitation phase, and to ensure that remote access is available to the attacker

Continuation
- Utilize ‘passive’ as well as ‘active’ attack methods to deepen the penetration
Advanced Intruders Discover New Vulnerability

Novice Intruders Use Crude Exploit Tools

Crude Exploit Tools Distributed

Automated Scanning/Exploit Tools Developed

Widespread Use of Automated Scanning/Exploit Tools

Intruders Begin Using New Types of Exploits

Source: CERT/CC (http://www.cert.org)
The vulnerability assessment process **A.I.D.A.**

- **Attention**: Do we pay attention to our weak points?
 - We find them by **scanning** our assets
 - Use vulnerability assessment tools for efficiency
 - In large networks different tools are deployed for more complete coverage

- **Interest**: How do we focus on the most interesting issues?
 - **Analysis and prioritization**
 - A large number of vulnerabilities are of low risk or irrelevant to the specific environment
 - Critical vulnerabilities need to be dealt with priority

- **Decision**: Remediation planning
- **Action**: Patch management, etc.
Challenges in vulnerability assessment process

- For a complex IT environment most of the analysis work must be done by human
- Generate large volume of data
- Different vulnerability assessment tools provide heterogeneous output
- Effective communication between existing tools suffers by a lack of common ground
- Area of potential improvement
Challenges in Vulnerability assessment (cont.)

Automation opportunity

- Scanning
 - Vulnerabilities (100%)
 - Analysis and Prioritisation
 - Critical Vulnerabilities (< 2%)
 - Remediation Planning
 - Remediation Actions (0.5%)

Time to Remediation

Large window of exposure: Decreased security level
The focus of the models is to facilitate the analysis and prioritization stage.

This model is based on a comparison of:
- Latest versions of Nessus XML reports and SARA™ and
- The latest Intrusion Detection Message Exchange Format (IDMEF) and Incident Object Description and Exchange Format (IODEF) drafts

There was effort to reuse IDMEF elements
- Either directly or by sub-classing them to add functionality

The Vulnerability XML report is structured in order to
- extract the asset information and
- group the associated vulnerabilities

The two main elements provided are the ScanAlert and Report.
Vulnerability report model (cont.)
<ScanAlert> Class

- <ScanAlert>
 - It is modeled on the IODEF IncidentAlert
 - Provides a different type of functionality
 - The IncidentAlert is used to simply alert someone/something to the occurrence of an incident and provide relevant information (such as raw IDMEF messages)
 - ScanAlert alerts an intrusion detection management system or other management system that a scan is going to be performed
 - As part of this alert, the scanner would provide ScanInformation and TargetInformation (detailed next)
<ScanAlert> Class (cont.)

- <ScanInformation>
 - It encapsulates information such as
 - the tool that is performing the scan, version of the tool
 - Information about the node that is being used to launch the scan,
 - Time information for documenting scan and a general description

- <TargetInformation>
 - This element documents the targets of the scan and contain the following items:
 - Address, name
Major <Report> classes

- **<Results>**
 - This element is meant to take the place of Nessus Results and SARA Details
 - It is closely tied to the IODEF Attack class, which in turn shares structure with IDMEF Alerts

- **<Target>**
 - Use of the IDMEF/IODEF Target class to achieve a standard format for representing the ‘host’ specific information
 - It includes
 - the <Node> class which contains address and name elements
 - <OS> element (type of operating system), <date> element

- **<Service>**
 - This class generically describes network services
 - A network service is defined by name and port
 - It includes the <vulnerabilities> class, since one service may have multiple vulnerabilities
<Vulnerability> Class

- **<Vulnerability>**
 - This class describes vulnerability by
 - Name
 - Family of services affected (e.g. FTP)
 - Category of attack (e.g. Information, Access, etc.)
 - It includes the <Classification> and <Assessment> classes and additional data

- **<Classification>**
 - Allows the manager who receives the Report messages to be able to obtain additional information
 - Origin (CVE, Bugtrrq) of the source, name and URL are included

- **<Assessment>**
 - It provides information related to the scanner’s assessment of the vulnerability
 - Includes the elements <Risk> and <Severity>
XSL transformations

- Generate VARF XML
- HTML presentation
- Creation of vulnerability diagram: visual representation of association between assets and vulnerabilities
XSL Generate transformations

Network

Nessus Server (nessusd)

Nessus client
Vulnerability assessment tool

Scanning report:
Nessus v2.x XML

Parser

XSL: Nessus v2 -> VARF

VARF XML
HTML presentation

Dynamic XSLT (client side XSLT transformations)
HTML presentation (cont.)

XSL: VARF XML -> VARF HTML

VARF XML

Parser

VARF-HTML
Vulnerability Diagram

- XML represents data in tree
 - Hard for human to understand
 - Lessen the burden by visualization

- Complete vulnerability diagrams
 - Shows all discovered vulnerabilities, but structures are very large
 - Hard to scale

- Reduced vulnerability diagrams
 - Cut sets of vulnerabilities
 - Which services, if suspended, leave the network secure?
 - Results inform administrator which services are, perhaps, too costly.

- Vulnerability diagram can be a subset of attack tree
 - Subsequent analysis is possible
Vulnerability Diagram

XSLT: VARF XML to Diagram Dot
(Dot: Graphviz tool compliant format)

VARF XML → Parser → Dot file → Graphviz

Vulnerability Diagram
Vulnerability diagram (concept)
Vulnerability diagram (example of actual results)
Conclusions

- In order to reduce the window of exposure, the security personnel need a way to set priorities and reduce the volume of vulnerability reports down to the few critical risks that matters.
- Due to proprietary nature of the reports and lack of standardization, this process is burdensome.
- Standards based format to report vulnerabilities would allow easier analysis and sharing of information with other data sets from a variety of compliant tools and systems.
 - VARF was motivated from the above and was based on existing standardization efforts.
- Vulnerability diagrams visualize the vulnerability management effort.