
Computer Support for Agile Human-to-Human
Interactions with Social Protocols

Willy Picard

Poznań University of Economics,
Department of Information Technologies,

ul. Mansfelda 4, Poznań, Poland
Willy.Picard@ue.poznan.pl,

WWW home page: http://www.kti.ue.poznan.pl/

Abstract. Despite many works in CSCW, groupware, workflow systems
and social networks, computer support for human-to-human interactions
is still insufficient, especially support for agility, i.e. the capability of
a group of human beings, collaborators, to rapidly and cost efficiently
adapt the way they interact to changes. In this paper, requirements for
computer support for agile H2H interactions are presented. Next, the
concept of social protocol is proposed as a novel model supporting agile
H2H interactions. A social protocol consists of an extended social network
and a workflow model.

Key words: social protocols, workflow, adaptation, social networks,
human-to-human interactions

1 Introduction

Computer support for Human-to-Human (H2H) interactions has a long history
in computer science: from early visionary ideas of Douglas Engelbart at the
Stanford Research Institute’s Augmentation Research Center on groupware in
the 60’s, through CSCW and workflows in the 80’s, and with social network
sites in the 2000’s. However, computer support for agile H2H interactions is still
insufficient in most collaborative situations.

Among various reasons for the weak support for H2H interactions, two rea-
sons may be distinguished: first, many social elements are involved in the H2H
interaction. An example of such a social element may be the roles played by
humans during their interactions. Social elements are usually difficult to model,
e.g. integrating hierarchical relations among collaborators to collaboration mod-
els. A second reason is the adaptation capabilities of humans which are not only
far more advanced than adaptation capabilities of software entities, but also are
not taken into account in existing models for collaboration processes.

Agility in H2H interactions refers to the capabilities of a group of human
beings, collaborators, to rapidly and cost efficiently adapt the way they interact
to changes. Changes may occur:



2 Willy Picard

– within the group: e.g., a collaborator may be temporary unavailable or he/she
may acquire new skills,

– in the environment of the group: e.g., a breakdown of a machine may occur,
weather conditions may prevent the realization of a given task.

In this paper, we present a model which provides support for agile H2H inter-
actions based on the concept of social protocols. In Section 2, requirements for
a computer support for agile H2H interactions are presented. Next, the con-
cept of social protocols supporting agile H2H interactions is detailed. Then, the
proposed solution is discussed. Finally, Section 5 concludes the paper.

2 Requirements for Support for Agile H2H Interactions

2.1 A Model of the Social Environment

A first requirement for support for agile H2H interaction is the modeling of
the social environment within which interactions take place. H2H interactions
imply the involvement of at least two collaborators, each of them having her/his
own social position. By social position, we mean a set of interdependencies with
entities (generally individuals or organizations): e.g. a collaborator has a set of
colleagues, works in a given company, belongs to a family.

Agility during H2H interactions implies a rapid adaptation of the collabo-
ration group to new conditions. The social environment is a core tool in the
adaptation process as it provides information about available resources collabo-
rators are aware of:

– within the group: e.g., if a collaborator is temporary unavailable, another per-
son in the social environment may substitute for the unavailable collaborator,

– in the environment of the group: e.g., if weather conditions prevent the real-
ization of a given task, new collaborators which were not initially involved in
the realization of the cancelled task may be needed to overcome it.

A partial answer to the question of modeling a social environment may be found
in popular in the last five years social network sites, such as LinkedIn [17],
MySpace [18], Orkut [19], Friendster [10] and Facebook [8], to name a few. Boyd
and Ellison [6] define social network sites as “web-based services that allow
individuals to (1) construct a public or semi-public profile within a bounded
system, (2) articulate a list of other users with whom they share a connection,
and (3) view and traverse their list of connections and those made by others
within the system.” The second and third points of this definition illustrate a
key feature of social network sites, i.e. social network sites allow users for an
easy access to information about persons they know (friends, colleagues, family
members) and potentially about contacts of these persons.

However, the model of social environment adopted in social network sites
captures only interdependencies among individuals or organizations. The inter-
dependencies with information systems, e.g. web services, are an important ele-
ment of the landscape of H2H interactions: while individuals represent the “who”



Supporting Agile Human-to-Human Interactions with Social Protocols 3

part of H2H interactions, information systems usually represent the “how” part.
A collaborator (the individual) performs some activity with the help of a tool
(the information system). Therefore, we claim that a model of the social envi-
ronment for H2H interactions should integrate both interdependencies among
collaborators and interdependencies among collaborators and information sys-
tems.

A model of social environment integrating interdependencies among collab-
orators and among collaborators and information systems would allow collabo-
rators to react to new situations not only by changing the set of collaborators,
but also by changing the set of tools. Additionally, such a model would allow
collaborators for agility with respect to changes related with information sys-
tems: e.g., if an information system is unavailable, collaborators may seek for an
alternative in their social environment.

2.2 Structured H2H Interactions

Supporting agile H2H interactions requires guidance for collaborators about
tasks they may perform at a given moment of time. Such a guidance allows
collaborators for focusing on appropriate tasks that need to be fulfilled at a
given moment of time, in a given collaboration situation, instead of facing all
potential tasks that they may perform.

The tasks that a given collaborator may perform depend also on the role
he/she is playing within a given group. Therefore support for agile H2H inter-
actions implies the mapping between collaborators and roles they are playing
within a given group.

Additionally, H2H interactions are often structured according to collaborative
patterns [3, 23]. In similar situations, in different groups, collaborators perform
activities whom successiveness is identical among the various groups: e.g., a
brainstorming session consists usually of five phases:

1. the chairman presents the problem,
2. every participant presents his/her ideas,
3. the chairman classifies the ideas,
4. every participant may comment any idea,
5. the chairman summarizes the brainstorming session.

In the former example, each phase may be decomposed as a sequence of activi-
ties to be performed, with activities associated to roles. H2H interactions could
therefore be structured with the help of a process and an associated process
model specifying the sequences of activities, the association between activities
and roles, and the mapping between collaborators and roles.

Results of studies in workflow technology and process modeling [9, 15, 11, 5]
provide a strong foundation for support for structured H2H interactions based
on the concepts of workflow and process models.



4 Willy Picard

2.3 Layered Interaction Models

The concept of process model presented in the former subsection as a mean to
structure H2H interaction has to be considered at three levels of abstraction:

– abstract process model : a process model is abstract if it defines the sequence
of activities to be potentially performed by collaborators playing a given role,
without specifying neither the implementation of activities, nor the attribu-
tion of roles to collaborators. As an example, an abstract process model for a
brainstorming session may specify that, first, a chairman presents the brain-
storming session problem, next, participants present their ideas. Neither the
implementation of the presentation of the problem and participants’ ideas, nor
the group collaborators are defined in the abstract process model.

– implemented process model : a process model is implemented if it defines the
implementation of activities defined in an associated abstract process model.
As an example, an implemented process model based on the brainstorming
abstract process model formerly presented may specify that the presentation
of the brainstorming session problem will be implemented as the sending of
an email to all participants, while the presentation of ideas will be performed
as posts to a forum.

– instantiated process model : a process model is instantiated if the attribution
of roles to collaborators for a given implemented process model has been set.
Additionally, an instantiated process model, referred also as process instance,
keeps trace of the current state of the H2H interactions. As an example, the
former implemented process model may be instantiated by specifying who
plays the chairman role and who are the participants. Additionally, the process
retains its current state which may for instance be “participants are presenting
ideas”.

The following analogy with object-oriented programming illustrates the three
levels of abstraction presented above:

– abstract process models are similar to interfaces or abstract classes. An ab-
stract process model does not rely, nor provide an implementation of activities,
as an interface does not provide an implementation of methods;

– implemented process models are similar to classes. An implemented process
model provides an implementation of activities, as a class provides an imple-
mentation of methods.

– instantiated process models are similar to objects. An instantiated process
model rules the H2H interactions according to a given implemented process
model and has its own state, as an object behaves according to its class and
has its own state too.

The separation of these three levels of abstraction leads to process model reuse.
By separating the logical structure of H2H interactions from its implementation,
an abstract process model may be reuse in various contexts, IT environments,
groups of collaborators. As a consequence, a group of collaborators facing some
unpredicted situation may identify an already defined abstract or implemented



Supporting Agile Human-to-Human Interactions with Social Protocols 5

process model allowing them to solve their problem. Then, the group may react
rapidly by just (eventually implementing and) instantiating the process. The
brainstorming process presented above is an example of an abstract or imple-
mented process that may be reuse by various groups of collaborators to interact
in an agile way.

2.4 Adaptability

Adaptability is a core requirement of support for agile H2H interactions. Adapt-
ability refers in this paper to the capability of a group of collaborators to modify
at run-time the process model ruling their interactions.

In typical workflow management systems, two parts may be distinguished:
a design time part allows for definition of workflow schemas while the run-time
part is responsible for execution of workflow instances. A main limitation of typ-
ical workflow management systems is the fact that once a workflow schema has
been instantiated, the execution of the workflow instance must stick to the work-
flow schema till the end of the workflow instance execution. This limitation is not
an issue if the lifespan of workflow instances is short in comparison with the time
interval between two requests for changes of the workflow schema. When the lifes-
pan of workflow instances is long in comparison with the time interval between
two requests for changes of the workflow schema, a high number of workflow in-
stances has to be executed with an “incorrect” workflow schema (i.e. that does
not take into account required changes) or cancelled. As a consequence, typical
workflow management systems are not flexible enough to support collaborative
processes in two cases: highly dynamic, competitive markets/environments and
long lasting collaboration processes.

In the case of highly dynamic, competitive markets/environments or long
lasting collaboration processes, there is a strong need for the possibility to mod-
ify a workflow instance at run-time. Such modifications are usually needed to
deal with situations which have not been foreseen nor modeled in the associ-
ated workflow schema. Adaptation refers to the possibility to modify a running
instantiated process model to new situations which have not been foreseen and
modeled in the associated abstract/implemented process model.

3 Social Protocols

Computer support for agile H2H interactions requires novel models to support
requirements presented in Section 2. The solution presented in this paper is
based on the concept of social protocol. This concept has been presented first
in 2006 [22], based on the concept of collaboration protocol [20]. An extended
version of the concept of social protocol, including elements related with the
modeling of the social environment, is presented in this paper.



6 Willy Picard

3.1 Abstract Social Protocols

An abstract social protocol, SPa, consists of two parts:

– an abstract social network : a direct graph modeling interdependencies among
abstract resources. An abstract social network models the social environment
required for a particular collaboration pattern.

– an abstract interaction protocol : a direct graph modeling interdependencies
among abstract activities. An abstract interaction protocol models the se-
quence of activities in a particular collaboration pattern.

In an abstract social network, vertices represent abstract resources that may
support or be actively involved in the collaboration process, such as a collabo-
ration role or a class of information systems. Edges represents relations between
resources associated with social interaction types, such as “works with”, “has al-
ready collaborated with” among roles, or “is the owner”, “uses” between a role
and a class of information systems. Labels associated with edges are not prede-
fined, as the concept of social protocol should be flexible enough to encompass
new types of interdependencies among resources. Therefore, new labels may be
freely created at design time.

An example of an abstract social protocol for brainstorming sessions is pre-
sented in Figure 1.

Formally, an abstract social network, SNa, is a directed graph < Ra, SIa >
where Ra is a finite set of nodes, each node referring to an abstract resource,
SIa the social interdependencies relation SIa ⊆ Ra×Ra×SIT , with SIT : a set
of social interaction types.

In an abstract interaction protocol, vertices represents:

– abstract activities that may be performed during the collaboration process,
such as “present the brainstorming problem” or “present an idea”. Activi-
ties are associated with a given role, e.g. only the chairman may present the
brainstorming problem;

– states in which the group may be at various moments of the collaboration
process, e.g. the group may be “waiting for ideas”.

Edges run between activities and states, never between activities nor between
states. Edges capture the potential activities in a given state, or states after the
execution of a given activity. One may recognize in abstract interaction protocols
the concept of Petri nets, where states are places and activities/roles pairs are
transitions.

Formally, an abstract interaction protocol, IPa, is a 3-tuple (Ta, Sa, Ea),
where Ta is a finite set of abstract transitions, Sa is a finite set of states, and
Ea is a multiset of arcs Ea : (Ta × Sa) ∪ (Sa × Ta) → IN. An abstract transition
ta ∈ Ta consists of an abstract activity aa ∈ Aa and a role ρa ∈ Rolesa.



Supporting Agile Human-to-Human Interactions with Social Protocols 7

Fig. 1. An example of an abstract social protocol. At the top, the abstract interaction
protocol of a brainstorming session. At the bottom, the abstract social network.

3.2 Implemented Social Protocols

Similarly to the relation between implemented process models and abstract pro-
cess models presented in Section 2.3, an implemented social protocol defines the
implementation of abstract activities associated with an abstract social protocol.

Therefore, an implemented social protocol consists of three parts:

– an abstract social protocol,
– a mapping of abstract resources associated to with abstract activities to im-

plemented resources. For instance, the abstract resource “Publication system”
of the former example may be mapped to a forum system on a given server.

– a mapping of abstract activities to implemented activities. For instance, the
abstract activity “presentation of the problem” of the former example may
be mapped to the URL of the form used to post information on the formerly
mentioned forum system.

These two mappings may be built based on a pre-existing social environment
defining interdependencies among resources (abstract and implemented). Addi-
tionally, the pre-existing social environment may be extended by the addition
of missing resources. Therefore, on the one hand, the implementation procedure
may take advantage of the social environment, on the other hand, the social
network may benefit from the implementation procedure.



8 Willy Picard

Formally, an implemented social protocol, SPi, is a 5-tuple (SPa, Ri, Ai,R↓,A↓),
where SPa is an abstract social protocol, Ri is a finite set of implemented re-
sources, Ai is a finite set of implemented activities, R↓ : Ra → Ri is a mapping
function, such that ∀ra ∈ Ra,∃ri ∈ Ri,R↓(ra) = ri, and A↓ : Aa → Ai is a
mapping function, such that ∀aa ∈ Aa,∃ai ∈ Ai,A↓(aa) = ai.

3.3 Social Processes

Similarly to the relation between instantiated process models and implemented
process models presented in Section 2.3, a social process defines the implemen-
tation of abstract roles associated with an implemented social protocol, as well
as keeps trace of the state of the H2H interactions.

Therefore, a social process consists of three parts:

– an implemented social protocol,
– a mapping of abstract resources associated with roles to collaborators. For

instance, the abstract resource “brainstorming chairman” is mapped to col-
laborator “John Smith”.

– a marking of active states.

The role-collaborator mapping may be built based on the pre-existing social en-
vironment. Additionally, the pre-existing social environment may be extended
by the addition of missing resources, by the addition of collaborators. There-
fore, on the one hand, the instantiation procedure may take advantage of the
social environment, on the other hand, the social network may benefit from the
instantiation procedure.

Formally, a social process, π, is a -tuple (SPi, C, C↓,M), where SPi is an
implemented social protocol, C is a finite set of collaborators, C↓ : Rolesa → C is
a mapping function, such that ∀ρa ∈ Rolesa,∃c ∈ C, c ∈ C↓(ρ), and M : Sa → IN
is a marking assigning a number of tokens to each state.

The creation of a social process requires: 1) the choice of an implemented
social protocol, 2) the attribution of roles to collaborators, and 3) the creation
of an initial marking. The initial marking contains a set of active states, referred
as initial states.

Next, the social process rules the interactions according to the associated
social protocol:

– a collaborator may trigger a transition t if, 1) he/she plays the associated role,
2) all states from which at least one arc leads to t contain a token, i.e. the
marking contains all states from which at least one arc leads to t.

– when a collaborator triggers a transition, 1) he/she performs the associated
activity, 2) the marking is updated, i.e. the tokens from input states (those
states from which at least one arc leads to t) are removed, and new tokens are
created in output states (those states to which at least one arc comes from t).



Supporting Agile Human-to-Human Interactions with Social Protocols 9

3.4 Meta-Processes

The concept of meta-process is our answer to the adaptation requirement. During
the execution of an instantiated social protocol, collaborators may identify a need
for modification of the process instance they are involved in. As a consequence,
collaborators need to interact to decide how the process should be changed. A
meta-process is a social process associated with another social process π allowing
collaborators of π to decide in a structured collaborative way how the process π
should be modified.

Formally, a meta-process µ is a pair π, πα, where both π, the to-be-adapted
process, and πα, the adaptation process, are social processes, share the same
set of collaborators C. The social process πα rules H2H interactions concerning
changes to be performed in π.

Depending on the type of changes provided during the meta-process, five
situations (summarized in Table 1) may be distinguished:

– Level 1 changes – role attributions: a meta-process may result in changes in
the role-collaborator mapping. For instance, “Susan Doe” may replace “John
Smith” as the brainstorming chairman. Such changes have an influence only
on the instantiated process model;

– Level 2 changes – activity implementation: a meta-process may result in
changes in the mapping of abstract activities to implemented activities. For
instance, instead of publishing new ideas on a given forum, collaborators may
decide to publish their ideas using a mailing list at a given address. Such
changes imply not only modifications of the instantiated process model, but
also modifications of the associated implemented social model;

– Level 3 changes – structural simplification: a meta-process may result in
changes towards the simplification of the structure of the interaction protocol,
with activities, states, transitions, roles or edges removed from the interac-
tion protocol. For instance, collaborators may decide that the summary of
the brainstorming session is not required. Such changes imply modifications
of the instantiated, the associated implemented, and the abstract social pro-
tocol. However, no new implementation has to be provided.

– Level 4 changes – structural modification: a meta-process may result in changes
towards the modification of the structure of the interaction protocol such that
no new activity, state, or role have to be defined. Edges and transitions can
be freely modified to reflect a new organization of states, activities and roles.
For instance, collaborators may decide that any participant may summarize
brainstorming session, and not only the chairman. Such changes imply here
also modifications of the instantiated, the associated implemented, and the
abstract social protocol. However, no new implementation has to be provided.

– Level 5 changes – structural extension: a meta-process may result in changes
towards the extension of the structure of the interaction protocol by the ad-
dition of new activities, states, or roles. Edges and transitions can be freely
modified to reflect a new organization of states, activities and roles. For in-
stance, collaborators may decide that the classification of the ideas should



10 Willy Picard

be accepted by an “observer”. This change implies the creation and the at-
tribution of the role of “observer”, the creation of two new activities “accept
classification” and “reject classification”, as well as the choice of the implemen-
tation of these activities, and finally the creation of appropriate transitions.
Such changes imply here also modifications of the instantiated, the associ-
ated implemented, and the abstract social protocol. Implementation of newly
added activities has to be provided, and the role-collaborator mapping has to
be redefined for newly created roles.

Table 1. The effects of various change types on the social process, the implemented so-
cial protocol, and the abstract social protocol, and the potential need for a redefinition
of activities implementation

Level Type Instance Implemented Abstract Implementation

1 role attributions X
2 activity implementation X X X
3 structural simplification X X X
4 structural modification X X X
5 structural extension X X X X

4 Discussion

Some interesting works have been done in the field of electronic negotiations to
model electronic negotiations with the help of negotiation protocols. In [16], it
is stated in that, in the field of electronic negotiations, “the protocol is a formal
model, often represented by a set of rules, which govern software processing,
decision-making and communication tasks, and imposes restrictions on activities
through the specification of permissible inputs and actions”. One may notice
the similarity with the concept of social protocol. The reason for this fact is
that the model presented in this paper was originally coming from a work on
protocols for electronic negotiations [21]. However, to our knowledge, none of
the works concerning negotiation protocols provides support for the modeling of
the social environment. Moreover, these works are by nature limited to the field
of electronic negotiations which is just a subset of the field of H2H interactions.

As process modeling is concerned, many works have already been conducted
in the research field of workflow modeling and workflow management systems.
Many works [1, 2, 25, 12, 13] have focused on formal models and conditions
under which a modification of an existing – and potentially running – workflow
retains workflow validity, the ADEPT2 project[7] being probably the most ad-
vanced one. However, to our best knowledge, current works concerning workflow
adaptation focus on interactions, and the importance of social aspects are not
or insufficiently taken into account by these works.



Supporting Agile Human-to-Human Interactions with Social Protocols 11

Sadiq and al.[24] have proposed an interesting model for flexible workflows,
where flexibility refers to “the ability of the workflow process to execute on the
basis of a loosely, or partially specified model, where the full specification of
the model is made at runtime, and may be unique to each instance.” However,
support for flexibility does not ensure support for adaptability, as flexibility, as
proposed by Sadiq and al., implies that the workflow designer has specified at
design time frames and boundaries to possible modifications of the workflow.

5 Conclusion

While many works are currently done on modeling collaboration processes in
which software entities (agents, web services) are involved, modeling collabora-
tion processes in which mainly humans are involved is an area that still requires
much attention from the research community. Some of the main issues to be ad-
dressed are the social aspects of collaboration and the adaptation capabilities of
humans. In this paper, the requirements of computer support for agile H2H in-
teractions are presented. Additionally, the concept of social protocol, combining
social networks and workflow models, is proposed as a model supporting agile
H2H interactions.

The main innovations presented in this paper are 1) the requirements for
agile H2H interactions, 2) the refinement of the concept of social protocol by the
addition of the concept of social network as a way to model the social environ-
ment, and 3) the three-layer view on social protocols – abstract, implemented,
and instantiated – and the concept of meta-process.

A prototype, based on Dyng [14], is currently under implementation to vali-
date the model presented in this paper. Among future works, methods to update
the social network to reflect H2H interactions performed in a given process are
still to be proposed.

References

1. van der Aalst, W. M. P.: The Application of Petri Nets to Workflow Management.
J. of Circuits, Systems and Computers. 8(1), 21–66 (1998)

2. van der Aalst, W. M. P., Basten, T., Verbeek, H.M.W., Verkoulen, P.A.C., Voorho-
eve, M.: Adaptive Workflow: On the Interplay between Flexibility and Support. In:
Filipe, J. (ed) Proc. of the 1st International Conference on Enterprise Information
Systems, vol. 2, pp. 353–360. Kluwer Academic Publishers (1999)

3. van der Aalst, W.M.P., van Hee, K.M., van der Toorn, R.A. Component-Based
Software Architectures: A Framework Based on Inheritance of Behavior. BETA
Working Paper Series, WP 45, Eindhoven University of Technology, Eindhoven,
http://wwwis.win.tue.nl/~wvdaalst/publications/p108.pdf (2000)

4. van der Aalst, W. M. P., Weske, M., Wirtz, G.: Advanced Topics in Workflow Man-
agement: Issues, Requirements, and Solutions. J. of Integrated Design and Process
Science. 7(3), 47–77 (2003)



12 Willy Picard

5. van der Aalst, W. M. P., van Hee, K.: Workflow Management: Models, Methods,
and Systems (Cooperative Information Systems). The MIT Press (2004)

6. Boyd, D.M., Ellison, N.B.: Social Network Sites: Definition, History, and Scholar-
ship. J. of Computer-Mediated Communication. 13(1), 210–230 (2007)

7. Dadam, P., Reichert, M.: The ADEPT Project: A Decade of Research and Devel-
opment for Robust and Flexible Process Support. Technical Report. Fakultät für
Ingenieurwissenschaften und Informatik, Ulm, http://dbis.eprints.uni-ulm.de/
487/1/Reichert_01_09-2.pdf (2009)

8. Facebook, http://www.facebook.com/
9. Fisher, L.: 2007 BPM & Workflow Handbook. Future Strategies Inc. (2007)
10. Friendster, http://www.friendster.com/
11. Harrison-Broninski, K.: Human Interactions: The Heart And Soul Of Business

Process Management: How People Really Work And How They Can Be Helped To
Work Better. Meghan-Kiffer Press (2005)

12. ter Hofstede, A.H.M., Orlowska, M.E., Rajapakse, J.: Verification Problems in
Conceptual Workflow Specifications. Data Knowledge Engineering. 24(3), 239–256
(1998)

13. ter Hofstede, A.H.M., Orlowska, M.E., Rajapakse, J.: Verification Problems in
Conceptual Workflow Specifications. In: Thalheim, B. (ed.) Conceptual Modeling -
ER’96, 15th International Conference on Conceptual Modeling, Cottbus, Germany,
October 7-10, 1996. LNCS 1157, pp. 73–88. Springer (1996)

14. Huriaux, T., Picard, W.: DynG: a Multi-protocol Collaborative System. In: Fun-
abashi, M., Grzech, A. (eds.) Proc. of the 5th IFIP International Conference on e-
Commerce, e-Business, and e-Government (I3E 2005), pp. 591–605, Springer (2005)

15. Jeston, J., Nelis, J.: Business Process Management, Second Edition: Practical
Guidelines to Successful Implementations. Butterworth-Heinemann (2008)

16. Kersten, G.E., Strecker, S.E., Lawi, K.P.: Protocols for Electronic Negotiation
Systems: Theoretical Foundations and Design Issue. In: Proc. of the 5th Conference
on Electronic Commerce and Web Technologies (ECWeb04), pp. 106–115, IEEE
Computer Society (2004)

17. LinkedIn, http://www.linkedin.com/
18. MySpace, http://www.myspace.com/
19. Orkut, http://www.orkut.com/
20. Picard, W.: Modeling Structured Non-monolithic Collaboration Processes. In:

Camarinha-Matos, L., Afsarmanesh, H., Ortiz, L. (eds.) Collaborative Networks
and their Breeding Environments, the 6th IFIP Working Conference on Virtual
Enterprises PRO-VE 2005, pp. 379–386, Springer (2005)

21. Picard, W., Huriaux, T.: DynG: A Protocol-based Prototype for Non-monolithic
Electronic Collaboration. In: CSCW in Design 2005. LNCS 3865, pp. 41–50 (2006)

22. Picard, W.: Computer Support for Adaptive Human Collaboration with Negotiable
Social Protocols. In: Abramowicz, W., Mayr, H.C. (eds.) 9th International Confer-
ence on Business Information Systems BIS 2006. Lecture Notes in Informatics, vol.
P-85, Gesellschaft fur Informatic, pp. 90–101 (2006)

23. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P. Workflow
Resource Patterns. BETA Working Paper Series, WP 127, Eindhoven University
of Technology, Eindhoven, http://www.workflowpatterns.com/documentation/

documents/Resource%20Patterns%20BETA%20TR.pdf (2004)
24. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process

constraints for flexible workflows. Information Systems. 30(5), 349–378 (2005)
25. Sadiq, S.W., Orlowska, M.E.: Analyzing process models using graph reduction

techniques. Information Systems. 25(2), 117–134 (2000)


