PERSONALIZED DISCOUNT A Fuzzy Logic Approach

Nicolas Werro, Henrik Stormer and Andreas Meier Information Systems Research Group University of Fribourg Switzerland

- 1. Motivation
- 2. Fuzzy Classification Concept
- 3. Fuzzy Customer Classes
- 4. Conclusion & Outlook

1. Motivation

- 2. Fuzzy Classification Concept
- 3. Fuzzy Customer Classes
- 4. Conclusion & Outlook

- A growing challenge for companies in the e-business era is the customer retention.
- A fuzzy classification of customers can:
 - Improve customer equity
 - Calculate a personalized discount
 - Launch and verify marketing campaigns
 - > Analyze customers' evolution

- The fuzzy classification approach is a combination of relational databases and fuzzy logic:
 - > Reduce the complexity of the customer data
 - Extract valuable hidden information
 - Enable the use of non-numerical values
 - > Query on a linguistic level
 - No data migration needed

1. Motivation

2. Fuzzy Classification Concept

- 3. Fuzzy Customer Classes
- 4. Conclusion & Outlook

Context Model

- Extend the relational model by a context model:
 - To every attribute Aj defined by its domain D(Aj), we add a context K(Aj)
 - A context K(Aj) is a partition of D(Aj) into equivalence classes
- Relational database schema with contexts R(A,K) where A=(A1,...,An) and K=(K1(A1),...,Kn(An))

Classification Example

- Classification of customers based on two attributes:
 - **Turnover** [0,1000] with:
 - low turnover [0,499]
 - high turnover [500,1000]
 - Payment behaviour {in advance, on time, behind time, too late} with:
 - attractive payment behaviour {in advance, on time}
 - non-attractive payment behaviour {behind time, too late}

Linguistic Variable

Aggregation of Fuzzy Sets

- The minimum operator
- The γ-operator

$$\mu_{A_i}(x) = \left(\prod_{i=1}^m \mu_i(x)\right)^{(1-\gamma)} \left(1 - \prod_{i=1}^m (1 - \mu_i(x))\right)^{\gamma}$$

Where $x \in X$, $0 \le \gamma \le 1$

Fuzzy vs. Sharp Classification

- The elements can be classified in several classes:
 - Each element has one or several membership degrees indicating to what extend it belongs to the different classes
 - Disappearance of the classes' sharp borders

Accurate information of the classified elements

- 1. Motivation
- 2. Fuzzy Classification Concept
- 3. Fuzzy Customer Classes
- 4. Conclusion & Outlook

Customer Equity

- The customer equity suggests that we should treat the customers to their real value
- A sharp classification cannot drive customer equity as every customer of a class is treated the same
- A fuzzy classification can realize the customer equity. The membership degrees of a customer in the different classes represent the real value of the customer and therefore can determine the privileges this customer deserves

3. Fuzzy Customer Classes

3. Fuzzy Customer Classes

Personalized Discount

- According to the customer equity principle, a personalized discount can be derived:
 - Discount rates can be associated with each fuzzy class: C1: 10%, C2: 5%, C3: 3%, C4: 0%
 - The individual discount of a customer can be calculated as the aggregation of the discount of the classes he belongs to, in proportion of his membership degrees in the classes

	in advance	on time	behind time	too late	D(Payment behaviour)
1000	Smith		C2 5%		Smith:
	C1				C1:100; C2:0; C3:0; C4:0
	10%				Brown:
500	Brown 🔆				C1:35; C2:17; C3:32; C4:16
499	C3 3%		Ford		Ford:
			C4 0%		C1:16; C2:32; C3:17; C4:35
					Miller:
0				Miller 🔆	C1:0; C2:0; C3:0; C4:100

D(Turnover)

- Smith: 1 * 10% + 0 * 5% + 0 * 3% + 0 * 0% = 10%
- Brown: 0.35 * 10% + 0.17 * 5% + 0.32 * 3% + 0.16 * 0% = 5.3%
- Ford: 0.16 * 10% + 0.32 * 5% + 0.17 * 3% + 0.35 * 0% = 3.7%
- Miller: 0 * 10% + 0 * 5% + 0 * 3% + 1 * 0% = **0%**

Marketing Campaign

- Launching a marketing campaign can be very expensive
- Select the most appropriate customers
- Verify the impact of the campaign in order to improve the target group

3. Fuzzy Customer Classes

Customers' Evolution

- With a fuzzy classification, there is the possibility of monitoring the customers through the classes
- Detect customers who are:
 - Improving
 - Maintaining
 - Decreasing
- > Avoid customer churning

- 1. Motivation
- 2. Fuzzy Classification Concept
- 3. Fuzzy Customer Classes
- 4. Conclusion & Outlook

Conclusion

The fuzzy classification, by giving a more precise information of the classified elements, allows to:

- Avoid the gaps between the classes
 - No more inequities
- Calculate a personalized discount
 - No ejection of potentially good customers and better retention of the top customers
- Verify the impact of a marketing campaign
 - More efficient marketing campaign
- Monitor the customers' evolution
 - > Avoid good customer churn

Outlook

- Adaptation of the marketing mix theory to take advantage of the fuzzy customer classes
- Implementation of the personalized discount in the open source eSarine webshop

Questions ???