
Chapter 1

GENERIC HIERARCHICAL
CLASSIFICATION USING THE
SINGLE-LINK CLUSTERING

Willy Picard and Wojciech Cellary
Department of Information Technology
The Poznań University of Economics
Mansfelda 4, 60-854 Poznań, Poland
{picard, cellary}@kti.ae.poznan.pl

Abstract Up to date, research on automatic classification focused mainly on the
efficiency of algorithms in regard to a given aspect of a dataset. The
issue of classification of a given dataset in regard to various aspects is
generally not addressed. In this chapter, a multi-facet hierarchical classi-
fication technique based on the single-link clustering is proposed. First,
the single-link clustering is formally presented. Then, the concepts un-
derlying the generic hierarchical classification technique are given. Next,
analysis domains modeling a given facet of a dataset are described. A
new language devoted to generate analysis domains is presented. Fur-
ther, classification of analysis domains is discussed. Finally, examples
of applications of the generic hierarchical classification are given.

Keywords: hierarchical classification, multi-facet analysis, ultra-metrics, single-link
clustering, analysis domain language.

1. Introduction
With the growth of the amount of information available on the In-

ternet, data classification is a necessity. Classification of information
should be hierarchical in order to allow fast focusing on information
classes of higher interest. Information classification problem is a subject
of intensive research. Two classification methods that are the mostly
used in practice are: Kohonen Self-Organizing Maps Algorithm and the
Hierarchical Bayesian Clustering. The Kohonen Self-Organizing Maps

2

Algorithm [6, 7] is based on a unsupervised neural network mapping
high dimensional input data onto a two-dimensional output space while
preserving relations between the data items. The Hierarchical Bayesian
Clustering [5] is based on Bayesian probability theory. It maximizes
the probability that a cluster is included in another cluster. Both these
methods are focused on the most efficient way of the dataset classifi-
cation according to a given criterion. However, in practice, a dataset
needs to be classified in many ways called below a ”generic hierarchical
classification”. For example, scientific papers can be classified according
to their domains, keywords, lengths, editors, relations with other papers,
etc.

The Kohonen Self-Organizing Maps Algorithm is not suitable to the
generic hierarchical classification, because the granularity of the data
classification is determined by the predefined, fixed size of the output
space.

The Hierarchical Bayesian Clustering is also not well suitable to generic
hierarchical classification, because each new classification criterion would
need the definition of a new probabilistic function for cluster aggrega-
tion. These probabilistic functions are difficult to built and even more
difficult to intuitively understand for a human.

The approach to the generic hierarchical classification proposed in this
chapter is based on the single-link clustering, which has strong math-
ematical basis presented in Section 1.2. The single-link clustering is
based on the use of ultrametrics. It has been proven that the notions of
ultrametric and hierarchical classification are equivalent. Thus, an ultra-
metric defines a hierarchical classification. Furthermore, an ultrametric
may be derived from any metric. So, any metric defines a hierarchical
classification.

The classes resulting of a classification based on a metric d are sets
of elements that are similar according to the criterion defined by the
distance d. The more similar two elements are, the less the distance
between them is. The definition of a new classification criterion would
imply the definition of the similarity between elements. Thus, a new
classification criterion would imply the definition of a new metric. As
the notion of metric is intuitive, new classification criteria may be easily
defined.

In this chapter, first, the mathematical basis of the single-link cluster-
ing is presented. Then, the multi-facet analysis concept is introduced.
Next, the data retrieval mechanism is described and formalized, as well

Generic HierarchicalClassification Using theSingle-Link Clustering 3

as the classification technique used. Finally, some examples illustrate
the power of the multi-facet classification technique.

2. Single-link Clustering
The goal of any classification is to group items according to their

proximity. The concept of promixity can be considered as the similarity
between items. The more two items are similar, the closest their are.

2.1 Partition
Similarity between items is expressed by a mathematical concept of

an equivalence relation.

Definition 1.1 An equivalence relation R on a set A is a relation that
is reflexive (∀a ∈ A, aRa), symmetric (∀a, b ∈ A, aRb ⇔ bRa), and
transitive (∀a, b, c ∈ A, aRb and bRc ⇒ aRc).

Examples of equivalence relations are: “have the same car” or “live in
the same country”. An example of an equivalence relation on natural
numbers is the “=” relation. The keyword of equivalence relations is the
word “same”.
Equivalence relations partition the universe into subsets (called classes):

Definition 1.2 A partition P of a set A is a collection of subsets
{A1, . . . Ak} such that any two of them are disjoint (for any i 6= j,
Ai

⋂
Aj =∅) and such that their union is A (

⋃
i∈[1,... n] Ai = A).

Every element of A is a member of exactly one subset of the partition
P . Assume that relation R is an equivalence relation on the set A. Let
[a] denote the set {b ∈ A | aRb}, where a ∈ A.

Lemma 1.3 For a ∈ A, the sets [a] constitute a partition of A.

Proof. Let assume that a, b ∈ A exist, where [a] 6= [b] and [a]
⋂

[b] 6= ∅.
Let c be any element of [b]− [a]. Let d be any element of [a]

⋂
[b]. First,

aRd, because d ∈ [a]. Second, dRb, because d ∈ [b], and bRc, because
c ∈ [b] and R is symmetric. By transitivity, dRc. Finally, by transitiv-
ity, aRc, which means that c ∈ [a]. The last result is in contradiction
with the fact that c ∈ [b]− [a]. Thus, for every a, b ∈ A, either [a] = [b]
or [a] ∩ [b] = ∅, which means that, for a ∈ A, the sets [a] constitute a
partition of A. ut

Lemma 1.4 Any partition {A1, . . . , Ak} of A defines an equivalence re-
lation by letting aRb iff a and b are members of the same Ai.

4

Proof. Reflexivity. ∀a ∈ A,∃i ∈ [1, . . . , k] such that a ∈ Ai. Clearly, a
and a are members of the same Ai, which means that aRa.

Symmetry. If aRb, ∃i ∈ [1, . . . , k] such that a ∈ Ai and b ∈ Ai. Also b
and a are members of Ai, and therefore bRa.

Transitivity. Assume that aRb and bRc. Thus, there exist i, j ∈ [1, . . . , k]
such that a and b are members of the same Ai and b and c are members
of the same Aj . However, by definition of a partition, b cannot be a
member of two different Ai and Aj . So Ai = Aj and a and c are mem-
bers of the same Ai, proving aRc. ut
By the proof of the two above lemmata, partitions and equivalence re-
lations are exchangeable notions.

2.2 Indexed Hierarchy
Let assume that A is a finite set. Let P(A) denote the set of all subsets

of A.

Definition 1.5 A hierarchy H on A is a subset of P(A) such that:

A ∈ H, (1.1)
∀a ∈ A, {a} ∈ H, (1.2)

∀(h1, h2) ∈ H2,

 h1 ∩ h2 = ∅,
or h1 ⊂ h2,
or h2 ⊂ h1.

(1.3)

Definition 1.6 An indexed hierarchy on A is a couple (H, f), where H
is a hierarchy and f is an application from H to R+ such that:

∀a ∈ A, f({a}) = 0, (1.4)
∀(h1, h2) ∈ H2, h1 ⊂ h2, h1 6= h2, ⇒ f(h1) < f(h2). (1.5)

2.3 Ultrametrics
Definition 1.7 An ultrametric on a set A is an application δ from
A×A to R+ such that:

∀(a, b) ∈ A2, δ(a, b) = 0 ⇔ a = b, (1.6)
∀(a, b) ∈ A2, δ(a, b) = δ(b, a), (1.7)

∀(a, b, c) ∈ A3, δ(a, b) ≤ sup[δ(a, c), δ(b, c)] (1.8)

Lemma 1.8 Consider δ an ultrametric on a set A. The relation R δ0

defined by
∀δ0 ∈ R+, aR δ0b ⇔ δ(a, b) ≤ δ0 (1.9)

Generic HierarchicalClassification Using theSingle-Link Clustering 5

is an equivalence relation.

Proof. Reflexivity. ∀a ∈ A, δ(a, a) = 0. Therefore δ(a, a) ≤ δ0, which
means that aRa.

Symmetry. If aR δ0b, then δ(a, b) ≤ δ0. By symmetry of ultrametrics,
δ(a, b) = δ(b, a). Therefore δ(b, a) ≤ δ0, which means that bR δ0a.

Transitivity. Assume that aR δ0b and bR δ0c. Thus, δ(a, b) ≤ δ0 and
δ(b, c) ≤ δ0. Because of equation 1.8, δ(a, c) ≤ sup[δ(a, b), δ(b, c)] ≤
sup[δ0, δ0] ≤ δ0,proving aR δ0c. ut

As shown in Section 1.2.1, equivalence relations and partitions are ex-
changeable notions. Therefore, let P(δ0) denote the partition that con-
sists of classes resulting from the equivalent relation Rδ0 .

Lemma 1.9 Let A be a finite set. If H =
⋃

δ0∈R+ P(δ0), then H is a
hierarchy.

Proof. Let us show that A ∈ H. As A is finite, there exists a maximum
distance between two its elements. The partition associated with the
maximum distance is the set A.

It is obvious that ∀a ∈ A, {a} ∈ H, because {a} = P(0).

Finally, for the condition 1.3, consider some arbitrary h1 and h2 ∈ H.
Then, ∃(δ0, δ

′
0) ∈ R+ such that h1 ∈ P(δ0), h2 ∈ P(δ

′
0). If h1∩h2 = ∅, the

condition is observed. Otherwise, consider a ∈ h1∩h2. h1 can be written
as h1 = {b ∈ A | δ(a, b) ≤ δ0}. Respectively, h2 = {b ∈ A | δ(a, b) ≤ δ

′
0}.

If δ0 ≤ δ
′
0, then h1 ⊂ h2. Otherwise, h2 ⊂ h1, which concludes the

proof. ut

Lemma 1.10 Let f be an application from H to R+such that

∀h ∈ H, f(h) = min {δ0 |h ∈ P(δ0)} .

Then, the couple (H, f) is an indexed hierarchy.

Proof. ∀a ∈ A, {a} ∈ P(0) ⇒ f({x}) = 0. Moreover, consider some
arbitrary h1 and h2 ∈ H, such that h1 ⊂ h2 and h1 6= h2. Consider a
being a member of h1. Therefore:

{δ0 |h1 ∈ P(δ0)} ⊂ {δ0 |h2 ∈ P(δ0)},

6

and then
min{δ0 |h1 ∈ P(δ0)} ≤ min{δ0 |h2 ∈ P(δ0)}.

So, f(h1) ≤ f(h2). Moreover, h1 6= h2 and h1 ⊂ h2 implies that there
exists an element b which is a member of h2 but not a member of h1.
Consider a ∈ h1 ∩ h2. Then,

f(h1) < δ(a, b) ≤ f(h2),

which means that f(h1) < f(h2). ut

Lemma 1.11 Consider an indexed hierarchy (H, f). An application δ
from A×A to R+is an ultrametric if

∀(a, b) ∈ A2, δ(a, b) = min
h∈H

{
f(h) | (a, b) ∈ h2

}
.

Proof. Reflexivity. By definition, δ(a, a) = 0, because f({a}) = 0. If
δ(a, b) = 0, then

∃h ∈ H such that a ∈ h, b ∈ h, f(h) = 0.

If h 6= ({a}) (i.e. a 6= b), f(h) > f({a}) = 0, which is impossible. Then
a = b.

Symmetry. The demonstration is obvious.

Condition 1.8. Consider h1 such that δ(a, b) = f(h1), h2 such that
δ(a, c) = f(h2), h3 such that δ(b, c) = f(h3). As c ∈ h2 ∩ h3, then
h2 ∩ h3 6= ∅. Because H is a hierarchy, let assume that h2 ⊂ h3 (if
h3 ⊂ h2, the proof is similar). Then,

f(h2) ≤ f(h3). (1.10)

Therefore, a, which is a member of h2, is also a member of h3 (b does
so). As

f(h1) = min
h∈H

{f(h) | (a, b) ∈ h2},

h1 ⊂ h3. Then,
f(h1) ≤ f(h3). (1.11)

Because of inequalities 1.10 and 1.11,

f(h1) ≤ sup [f(h2), f(h3)] ,

which proves Condition 1.8. ut
From Lemmata 1.10 and 1.11, the notions of an ultrametric and an
indexed hierarchy are exchangeable, as illustrated in Figure 1.1. When
δ0 changes, different classes are created and the hierarchical aspect of
the classification is visible in the embedment of classes.

Generic HierarchicalClassification Using theSingle-Link Clustering 7

1 2 3 4 5 6 7 8

54 6

7

8

3

21

2

3

5

threshold

A

Figure 1.1. Equivalence between indexed hierarchy (on the left side) and ultrametric
(on the right side, the classes for various values of δ0)

2.4 Path Metrics
Definition 1.12 A path p between two elements a and b in a set A is
a list of elements p = (a1, a2, . . . an) such that:

∀i, ai ∈ E,

a1 = a,

an = b.

Definition 1.13 Let d be a metric on A. A step sd(p) of the path p for
the metric d is:

sd(p) =
n−1
sup
i=1

d(ai, ai+1).

Definition 1.14 The path metric δd for metric d on a set A is an
application from A×A to R+ such that:

δd(a, b) = inf
p∈P(a,b)

sd(p),

where P(a, b) is the set of all the paths from a to b in A.

Lemma 1.15 Each path metric is an ultrametric.

Proof. Conditions 1.6 and 1.7 are obvious. Let prove condition 1.8.

δd(a, b) = inf
p∈P(a,b)

sd(p)

≤ inf
p∈Pc(a,b)

sd(p),

where Pc(a, b) is the set of all the paths from a to b in A containing c.
By definition of sd(p),

δd(a, b) ≤ inf
p1∈P(a,c)

inf
p2∈P(c,b)

sup [sd(p1), sd(p2)]

δd(a, b) ≤ sup
[

inf
p1∈P(a,c)

sd(p1), inf
p2∈P(c,b)

sd(p2)
]

δd(a, b) ≤ sup [δd(a, c), δd(c, b)] ,

8

which proves Condition 1.8. ut

A path metric may be derived from every metric. As every path met-
ric is an ultrametric, and every ultrametric is equivalent to an indexed
hierarchy,

Every metric defines an indexed hierarchy.

3. Concepts

3.1 Analysis of a Set of Data
Knowledge extraction is mainly basing on various analyses of a dataset.

In many cases, users cannot conduct these analyses manually, because
the amount of data to be analyzed is too high. Therefore, software tools
need to be developed to provide users with synthetic views of a given
dataset.

An analysis support system has to provide users with a possibility of
various analyses of a dataset to well understand different aspects of the
given dataset. For instance, a user may want to analyze the involve-
ment of different scientists in the scientific community, or to analyze the
correlation between authors and a given research topics.

To analyze a dataset , both the abstract objects to be analyzed and
the analysis criteria must be defined.

3.2 Mapping Functions
Objects to be analyzed are generated by a mapping function f from

space S to a set denoted Df . S is the dataset space. Different mapping
functions are used to analyze different aspects of the dataset.

Multiversion
Contract

f5

f4

f3

f2

f1
Paragraph importance

Negotiator involvement

Price propositions of negotiator 2

Price propositions of negotiator 1

Price propositions

Figure 1.2. Mapping functions

Generic HierarchicalClassification Using theSingle-Link Clustering 9

To illustrate the use of various mapping functions to analyze differ-
ent aspects of a dataset, consider a negotiation process in which various
negotiators are trying to reach an agreement on a contract, each of-
fer being considered as a new contract version. The various aspects of
the dataset generated during the negotiation process can be analyzed
with the help of various mapping functions as presented in Figure 1.2.
Mapping function f1 generates a set of objects modeling negotiator in-
volvement. Mapping function f2 generates a set of objects modeling
paragraph importance. Mapping functions f3, f4, and f5 generate sets
of objects modeling price propositions for various subsets of the analyzed
dataset.

3.3 Hierarchical Classification
In a highly concurrent environment, the result of an analysis should

be a hierarchical classification [8]. Given a set of objects, a classification
splits it into subsets of similar objects, denoted classes. Hierarchical
classification provides users with a set of embedded classes. Users can
then choose a granularity level (the number of classes) of the classifica-
tion. For instance, the same set of authors will be split into few classes
if a general involvement characteristics is required, or into many classes
if detailed characteristics of authors involvement is required.

As the proposed solution is based on metrics, and ultrametrics, the
criteria used to analyze set Df are defined in a human understandable
way, so that users may choose and define the criteria they want.

4. Analysis Domains

4.1 Domain Objects
Domain objects are used to model various facets of the dataset to

be classified. Domain objects may for instance represent the editors of
scientific papers, the relationships between news and press agencies, etc.
As a consequence, domain objects must be flexible enough to represent
various data types.

Each domain object is an element of an analysis domain. An analysis
domain is a set of domain objects modeling a facet of a dataset. Formally,
let Df denote the analysis domain modeling facet of a dataset, denoted
f .

A domain object DOi is uniquely identified in a given set of domain
objects by its identifier doi. Formally,

∀(DOi, DOj) ∈ D2
f , doi = doj ⇔ DOi = DOj

10

∀(DOi, DOj) ∈ Df ×Df ′ , doi = doj and DOi 6= DOj ⇒ Df 6= Df ′

A domain object DOi consists of:

a unique identifier, denoted doi,

a set of attributes, and

a type.

An attribute is a pair (name, value). Each attribute models a property
of the domain object. To illustrate the use of attributes, let us assume
that a book is modeled by a domain object denoted DObook . The at-
tributes of DObook are pairs (′author′,′ JohnSmith′), (′editor′,′Kluwer′),
and (′title′,′ the ACME prototype.′).

An attribute name is a character string. A character string consists
of one or many characters defined in the Unicode standard [9]. In case
of Internet data classification, no limitations are assumed on the used
languages. As a consequence, attribute names should not be limited to
one or a few sets of languages and their characters. The use of Unicode
allows for an international audience.

An attribute value is a domain object, because domain objects are
able to model complex data types. A domain object may, for instance,
model an editor, with attributes name and address. The value of the
editor attribute in the former example may be such a domain object.

Also identifiers are domain objects in order to associate semantics
with the identifiers. For instance, the identifier dobook may be a domain
object modeling a “book identity”. Identifier dobook may have the fol-
lowing attributes: ISBN (International Standard Book Number), and
checkDigit (last digit of an ISBN used to check ISBN validity). The
domain object DObook is then identified by a domain object defining the
ISBN identifier and its check digit.

Object domain types are Unicode character strings. Object domain
types are used for two purposes. First, an object domain type associates
some semantics with an object domain. In the former example, the type
of DObook may be book to indicate the meaning of the data DObook

models. Second, domain object types allows domain object structure to
be defined. The structure of domain objects representing books may be
defined as follow:

identifier: type extendedISBN,

attributes:

Generic HierarchicalClassification Using theSingle-Link Clustering 11

– author: type Person,
– editor: type Editor,
– title: type String.

Types of identifier and attribute values are corresponding to domain
object types.

The following six primitive domain objects may be considered as the
atomic data elements for domain object building:

String,

Integer,

Long,

Float.

Double,

Boolean.

Primitive domain objects do not refer to any other domain object type.
Primitive objects have only one attribute denoted value. The value of
this attribute depends on the domain object type. Primitive domain
object values are presented in Table 1.1.

Table 1.1. Primitive domain objects

Type Description Size/Format

String Character string from 0 to 231 − 1 Unicode characters
Integer Integer 32-bit two’s complement
Long Long integer 64-bit two’s complement
Float Single-precision floating point 32-bit IEEE 754 (defined in [3])
Double Double-precision floating point 64-bit IEEE 754 (defined in [3])
Boolean A boolean value (true or false) true or false

4.2 Analysis Domain Definition
Domain objects are generated according to an Analysis Domain Func-

tion (ADF). An ADF is a function whose image is an analysis domain.
Formally,

f is an ADF ⇔
{

f is a function on analysis domains Dorigi

Im(f) = {DO}, where DO are domain objects

12

When two or more analysis domains exist for an ADF, the function
is said to be multi-variable. A special analysis domain, denoted ∅, is
defined by card(∅) = 0. The existence of the analysis domain ∅ allows
to distinguish transformer functions from generator functions.

Definition 1.16 An ADF f is a generator function iff only one origin
domain of f exists that is ∅.

A generator function creates an analysis domain without the need
of pre-existing data in the form of an analysis domain. A generator
function may for instance generate the number π, or retrieve data from
a database.

Definition 1.17 An ADF f is a transformer function iff at least one
origin domain of f is different from ∅.

A transformer function transforms an existing analysis domain into
another analysis domain. A transformer function may for instance trans-
form an analysis domain modeling books into another analysis domain
representing the number of books for each author.

ADF functions may be embedded according to the composition law.
The composition law allows “pipelines” of functions to be defined, in
which an analysis domain being the results of an ADF is an origin domain
of another ADF.

Definition 1.18 The ADF composition law, denoted ◦, defines an ADF
f◦ from ADF(s) fi as follow:

for single-variable functions, f◦ = f1 ◦ f2 = f1(f2);

for multi-variable functions, f◦ = f1◦(f2, . . . , fn) = f1(f2, . . . , fn),

where f1 is a transformator function, while f2 and f3 are either generator
or transformator functions.

4.3 Analysis Domain Language
The Analysis Domain Language (ADL) is used to define ADFs. ADL

is a dialect of XML — the eXtensible Markup Language. The eXtensi-
ble Markup Language [2] describes a class of data objects, called XML
documents, and partially describes the behavior of computer programs
that process them. XML is based on SGML – the Standard Generalized

Generic HierarchicalClassification Using theSingle-Link Clustering 13

Markup Language [4]. XML documents are conforming to SGML doc-
uments by construction. There are multiple reasons for using XML for
ADL:

it is an emerging standard developed by the WWW consortium;

it is a general-purpose and extensible language;

it allows defining language grammar that can be automatically
validated by a parser;

it is designed and optimized for parsing structured documents;

the parsing software for XML is available;

it can be easily integrated with other XML-based web standards;

it allows defining human-readable data in a standardized way.

ADL is basing on four elements: Metaobjects, ObjectSets, Tags, and
Functions. Metaobject correspond to domain objects. ObjectSets cor-
respond to analysis domains. Tags are basic elements of processing.
Functions correspond to ADFs.

4.3.1 Modules. ADL is structured in modules. A module
groups metaobject definitions, definitions of functions generating these
metaobjects and potentially implementation of needed features – as
tags. A module may for instance define metaobjects modeling books
and related-informations, functions for retrieval of book informations
from a database and some new tags needed to access a database.

XML Namespaces [1] is used to avoid name collisions. Metaobject,
function and tag names are universal, their scope extends beyond the
module that contain them. Each module is responsible for associating
itself with a URI. A module may use metaobjects, functions and tags
defined in another module. A namespace referring the URI of the used
module must be defined and associated with a prefix. An XML names-
pace must be associated to every used module.

An example of the use of XML Namespaces for modularization of
ADL is presented in Figure 1.3. Metaobjects, functions and tags defined
in module M1 may be used in module M2 as qualified names. M2 may,
for instance, associate the prefix mOne to module M1. Function fOne
defined in M1 may be then used in M2 as mOne:fOne.

A module is defined in an XML document. A module definition doc-
ument contains:

14

the name of the module,

a URI defining the associated namespace,

potentially a list of tag definition references,

potentially a list of function definition references, and

potentially a list of metaobject definition references.

An example of module definition document is given below:

<module name="testModule"
uri="http://nessy.pl/adl/testing">

<tags>
<tag-decl name="if"

definition="if.tdl"/>
...

</tags>
<functions>
<function-decl name="BooksFromDB"

definition="retrieveBooks.fdl"/>
...

</functions>
<objects>
<object-decl name="Book"

definition="Book.odl"/>
...

</objects>

Namespace:
http://adl.org/m1

Namespace:
http://adl.org/m2

Import(s):
mOne

MetaObjects:

Functions:
fOne
gOne

Tags:

...

...

...

Module M1

MetaObjects:

Functions:
...

Module M2

...

Tags:
...

Figure 1.3. Modules in ADL.

Generic HierarchicalClassification Using theSingle-Link Clustering 15

</module>

In the module definition document given above, a module named
testModule is defined. The URI http://nessy.pl/adl/testing is as-
sociated with this module. First, a tag named if is defined. Its definition
can be found in the if.tdl tag definition document. Second, a func-
tion named BooksFromDB is defined. Its definition can be found in the
retrieveBooks.fdl function definition document. Finally, a metaOb-
ject named Book is defined. Its definition can be found in the Book.odl
metaobject definition document.

ADL provides a module — denoted the core module — which groups
basic functionalities of ADL. The core module provides primitive metaOb-
jects and fundamental tags for ADL. The namespace for the core mod-
ule — the URI it is associated with — is http://nessy.pl/adl/core.

4.3.2 Expressions. In ADL, expressions are defined as ${some
Expression}. An expression can contain:

variable references,

operators, and

literals.

Variable reference
Variable references are done by names. If a variable myVariable has

been defined, the expression ${myVariable} returns the variable myVari-
able. To test if myVariable is set, the expression ${isEmptyObject my-
Variable } may be used.

Operators
The following operators are defined:

- relational operators: ==, !=, ¡, ¿, ¡=, ¿=

- arithmetical operators: *, +, -, /, div, mod

- logical operators: ——, &&, !

- operator empty that checks if a metaobject is unset or if an
objectSet contains some metaobject;

- operator ”.” that retrieves metaobject attribute. For ex-
ample, ${myMetaObject.myAttribute} retrieves the attribute
myAttribute from metaobject myMetaObject ;

16

- operator “[]” that retrieves metaobject from objectSet ac-
cording to their IDs. For example, ${myObjectSet [myMeta-
ObjectID]} retrieves the metaobject identified by myMeta-
ObjectID from the objectSet myObjectSet.

Literals
The following literals are defined:

- logical: true or false,

- integers,

- floats,

- character strings surrounded by single or double quotes. The
backslash character “\” is used to escape single and double
quote characters, i.e. “”’ is obtained by “\”’. The backslash
character must be entered as “\\”.

- Unset value: null.

4.3.3 MetaObjects. MetaObjects are defined in an XML
document. A metaObject definition document contains:

the name of the metaObject type,

the name of the type of the metaObject identifier, a list of the
attributes and their type if the metaObject is not a primitive,

the type of the value if the metaObject is a primitive.

An example of metaObject definition document is given below:

<object-def type="Book">
<id type="extendedISBN"/>
<attributes>
<attribute name="author" type="Person"/>
<attribute name="title" type="String"/>
<attribute name="editor" type="Editor"/>

</attributes>
</object-def>

In the metaObject definition document presented above, a metaOb-
ject named Book is defined. It is identified by a metaObject whose type
is extendedISBN. Three Book attributes are defined: author (of type
Person), title (of type String) and editor (of type Editor). As at-
tributes are defined, the metaObject Book is not a primitive metaObject.

Generic HierarchicalClassification Using theSingle-Link Clustering 17

An example of a primitive metaObject definition document is given
below:

<object-def type="String">
<value type="java.lang.String">

</object-def>

In the metaObject definition document presented above, the String
primitive metaObject is associated with the java.lang.String class.
No ID is defined as the java.lang.String is responsible for unique
self-identification.

4.3.4 ObjectSets. An objectSet is a set of metaObjects. All
metaObjects of a given objectSet have the same type. An objectSet
may be empty, i.e. no metaObject is a member of the objectSet. The
emptiness of an objectSet may be check with the isEmptySet operator.
If objectSet OS is empty, isEmptySet OS is true. The emptiness of an
objectSet may also be checked with the size operator. The size operator
returns the size of an objectSet. The size of an objectSet is the number
of metaObjects it contains. If the objectSet OS is empty, OS.size equals
to 0.

The core module provides tags for basic operations on objectSets.
Four operations are defined: objectSet creation (declare tag), metaOb-
ject addition to an objectSet (add tag), metaObject deletion from an
objectSet (remove tag), and deletion of all metaObjects from an object-
Set (clear tag). The for-each tag is an iterator on objectSets.

All ADF origin domains are objectSets. The image (in the math-
ematical sense) of all ADF is an objectSet. Figure 1.4 illustrates the
relationship between ADF (functions) and objectSets.

4.3.5 Tags. Tags associate processing entities with XML tags.
A processing entity is an independent software or a part of a software,
such as a database access layer or a statistical library. The XML tags
associated with processing entities can be used in function definitions.
Tags are the only mechanism to extend ADL. When new features are
needed, a new XML tag may be associated with a processing entity that
implements the needed feature.

Two kinds of tags may are defined:

empty tags, and

non-empty tags.

18

O
ri

gi
n

do
m

ai
ns

ADF

ObjectSets

MetaObjects

Image

Figure 1.4. ObjectSets and ADF

An empty tag corresponds to an XML empty tag. An empty tag does
not have any content. In a function declaration, an empty tag is called
by the insertion of the associated empty XML tag.

A non-empty tag corresponds to a non-empty XML tag. A non-empty
tag has content, with one or many children tags. In a function declara-
tion, a non-empty tag is called by the associated non-empty XML tag.

Processing entities may be written in various programming languages.
For the JavaTM language, which has been chosen for the implementation
of the ADL compiler, two interfaces have been defined: one for empty
tags, and the other for non-empty tags.

Tags are defined in an XML document. A tag definition document
contains:

the name of a tag,

the name of programming language a tag is implemented in,

optionally – tag parameters specific to the chosen programming
language.

An example of tag definition document is given below:

<tag-def name="SQLQuery" lang="java">
<javaClass name="pl.nessy.db.SQLQuery">
<params>
<param name="connection"

type="String"
required="true"/>

Generic HierarchicalClassification Using theSingle-Link Clustering 19

<param name="query"
type="String"
required="true"/>

</params>
</javaClass>

</tag-def>

In the tag definition document presented above, a tag named SQLQuery
is defined. It is implemented in the JavaTM programming language. All
children (connection and query) elements are specific to tag implemen-
tation in JavaTM.

4.3.6 Functions. Functions are the core of ADL. An ADF is
expressed in ADL as a function. Each function models a potential facet
of a given dataset. A function processes zero, one or many objectSets.
The result of the processing of a function is an objectSet. Generator
ADFs, as defined in Section 1.4.3.7, are functions that do not process
any objectSet. Transformers ADFs are functions that process at least
one objectSet.

Functions are defined in an XML document. A function definition
document contains:

the name of a function,

optionally – the names of modules the function uses,

optionally – the objectSets to be processed and the type of metaOb-
jects they contain,

the name of the resulting objectSet and the type of metaObjects
it contains,

the processing actions to be performed.

The processing actions may be calls to tags and functions. Calls to tags
are done by inserting the associated XML tags. To call functions, a
special tag defined in the core module is applied.

An example of function definition document is given below:

1. <function-def name="BooksFromDB"
2. xmlns:core="http://nessy.pl/adl/core"
3. xmlns:col ="http://nessy.pl/adl/collections">
4.
5. <param name="isbnList" type="ISBN"/>
6. <param name="bookDB" type="BookFromDB"/>

20

7. <result name="books" type="Book"/>
8.
9. <processing>
10. <declare name="tempBooks" type="Book"
11. isASet="true"/>
12. <core:for-each var="bookFromDB" items="bookDB">
13. <core:declare name="localBook" type="Book"/>
14. <core:set
15. obj="localBookList"
16. attribute="title"
17. value="${bookFromDB.title}"/>
18.
19. <col:ifContains
20. col="isbnList"
21. item="${bookDB.isbn}">
22. <core:set
23. obj="localBook"
24. attribute="id"
25. value="${bookDB.isbn}"/>
26. </col:ifContains>
27.
28. <add to-set="tempBooks" name="localBook"/>
29. </core:for-each>
30.
31. </core:execute name="col:deleteDoublons"
32. into="books">
33. <core:param value="tempBooks"/>
34. </core:execute>
35. </processing>
36. </function-def>

In the function definition document presented above, a function named
BooksFromDB is defined. It uses the core module (line 2) and a possi-
ble col module responsible for extended collection manipulation (3.).
The function processes two objectSets isbnList and bookDB containing
metaObjects of type ISBN and BookFromDB (lines 5 and 6), respectively.
The resulting objectSet books contains metaObjects of type Book (line
7).

4.3.7 The core Module. The core module defines a set of
primitive metaObjects and tags. Primitive objects are defined in Sec-
tion 1.4.1. As presented in Table 1.2, tags in the core module are clas-
sified in five categories:

Generic HierarchicalClassification Using theSingle-Link Clustering 21

variable declaration,

metaObject attribute setting,

control flow statements,

function call, and

objectSet manipulation operations.

Table 1.2. Tags defined in the core module

Tag category Tag(s) name

Variable declaration declare

MetaObject attribute setting set

Control flow statement choose, if
Function call execute

ObjectSet manipulation add, for-each, remove, clear

5. Classification of Domain Objects

5.1 Parametric Analysis
The goal of classification is to provide a synthetic view of an aspect

of a given dataset. The choice of a facet corresponds to the choice of an
ADF. The result of the execution of an ADF is an analysis domain, i.e.
a set of domain objects. The ADF defines the facet of the dataset to be
analyzed, generating domain objects modeling a given facet.

As domain objects may model complex views of a dataset, and the
interests of a given user may be different from other users’ interests,
many analyses may be performed on the same domain objects. For this
reason, the concept of parametric analysis is proposed.

Definition 1.19 An analysis is parametric if various criteria may be
used to perform various analyses of a given analysis domain.

A given analysis domain consists of a set of domain objects. All
domain objects of a given analysis domain are of the same type. As a
consequence, the type of an analysis domain may be defined as follows:

Definition 1.20 The type of an analysis domain AD is the type of
domain objects of the analysis domain AD.

The domain object type – and thus the analysis domain type – defines
the attributes of all domain objects of this type. So, given an analysis

22

domain, the attributes of domain objects of the analysis domain are
known.

Analysis criteria need the presence of some attributes. Attribute val-
ues are data to be analyzed. Attribute names are semantics associated
with data to be analyzed. Therefore, every analysis criterion is associ-
ated with a given domain object type. As a consequence, the type of an
analysis criterion may be defined as follows:

Definition 1.21 The type of an analysis criterion AC is the type of
domain objects the AC is associated with.

A given analysis domain may be associated only with the analysis
criteria corresponding with the analysis domain type. A relationship
many-to-many between analysis domains and analysis criteria exists.
This relationship is a compatibility relationship.

Definition 1.22 An analysis domain AD and an analysis criterion AC
are compatible iff the type of AD and the type of AC are the same

A

B

Types:

analysis criteria classifications

A
na

ly
si

s
do

m
ai

n
B

A
na

ly
si

s
do

m
ai

n
A

Figure 1.5. Parameterizable analysis

The concept of parametric analysis is illustrated in Figure 1.5. Two
different analysis domains may be analyzed according to various criteria.
Each criterion produces a classification. Each criterion is associated with
an analysis domain type. In Figure 1.5, it is assumed that the domain
analysis domain types of A and B are different. As a consequence, no
criterion may be used for both analysis domain. The analysis domain
A is compatible with the analysis criteria represented by a circle. The

Generic HierarchicalClassification Using theSingle-Link Clustering 23

analysis domain B is compatible with the analysis criteria represented
by a hexagon. Analysis of A and B are parametric: various criteria may
be used to perform various analyses of both A and B.

5.2 Analysis Criteria Definition

An analysis criterion is a metric on a given analysis domain. Formally:

Definition 1.23 A function AC is an analysis criterion iff
AC is a function from AD2 to R+

∀(x, y) ∈ AD2, x = y ⇔ AC(x, y) = 0
∀(x, y) ∈ AD2, AC(x, y) = AC(y, x)
∀(x, y, z) ∈ AD3, AC(x, y) ≤ AC(x, z) + AC(y, z)

Analysis criteria are a subset of transformer functions (Cf. Sec-
tion 1.4.2), so they are ADFs. They can, therefore, be defined in ADL.

An analysis criterion is an ADF with two analysis domain, each of
them containing only one domain object. The resulting domain contains
only one domain object modeling the concept of distance between two
domain objects.

Formally, let AC denote an analysis criterion on an analysis domain
AD. The type of AC, as well as AD, is denoted typeAC. Let do1 and
do2 denote two domain objects of AD. Let r ∈ R+∗ denote the distance
between do1 and do2 according to AC. Let ADr denote the resulting
analysis domain.

For AC, two origin analysis domains AD1 and AD2 are defined by
AD1 = {do1} and AD2 = {do2}. The analysis criterion AC may be
defined as follows:

<function-def name="AC"
xmlns:core="http://nessy.pl/adl/core">

<param name="first" type="typeAC"/>
<param name="second" type="typeAC"/>
<result name="result" type="typeAC_distance"/>

<processing>
...
</processing>

</function>

24

ADr contains only one domain object dor. The type of dor — which is
also the type of ADr — is typeAC distance. Domain objects of this
type may be defined as follows:

<object-def type="typeAC_distance">
<id type="core:Integer"/>
<attributes>
<attribute name="first" type="typeAC"/>
<attribute name="second" type="typeAC"/>
<attribute name="distance" type="Float"/>

</attributes>
</object-def>

Processing actions to be performed to calculate the distance between
do1 and do2 are defined by calls to functions or tags, like for every ADF.
The user defining new analysis criterion has to check whether the set of
processing actions she/he uses to define the processing of the analysis
criterion defines a metric. The ADF compiler does not perform any
checking of the conditions given in Definition 1.23.

5.3 Classifications
Given an analysis domain and an analysis criterion that are compati-

ble, a classification can be processed. A classification is the result of the
analysis process. The structure of the classification is based on the inter-
class distance. Classifications allow analysis domains to be partitioned
at various level of granularity by the threshold operation.

5.3.1 Classification Structure. A classification is defined in
terms of classes and inter-classes distances. A class may contain either
other classes and an inter-class distance, or one or more metaObjects
(with an inter-class distance always equal to 0). More formally, let C
denote a classification on analysis domain DA. C is a set of classes
denoted ci. Classes are formally defined as follows:

∀ci ∈ C,

 ci = ({cj}, di), where ∀j, cj ∈ C, di ∈ R+∗

or
ci = {MOj}, where ∀j, MOj ∈ DA

∀(ci, cj) ∈ C2, ci ⊂ cj or ci ⊃ cj or ci

⋂
cj = ∅

Two kinds of classes exist. Some classes – denoted atomic classes –
contains only metaObjects. Others – denoted complex classes – contains
only classes and an inter-class distance.

Generic HierarchicalClassification Using theSingle-Link Clustering 25

The classification is an indexed hierarchy under the condition that an
additional constraint is set on inter-class distances:

∀(ci, cj) ∈ C2 such as ci 6= cj , ci ⊂ cj ⇒ di < dj ,

where di (respectively dj) is the inter-class distance associated with ci

(respectively cj) and the inter-class distance of atomic classes equals 0.

Let a distance D on C be defined as follows:

ci ⊂ cj ⇒ D(ci, cj) = dj ,

if ci
⋂

cj = ∅, let ck ∈ C be such that ci ⊂ ck, cj ⊂ ck, and

∀cl ∈ C, cl ⊂ ck ⇒ ¬(ci ⊂ cl and cj ⊂ cl). Then D(ci, cj) = dk.

Lemma 1.24 In an indexed hierarchical classification, the inter-class
distance di associated with class ci observes D(cj , cj′) ≤ di, where cj ⊂ ci

and cj′ ⊂ ci.

Proof. If cj ⊂ cj′ , D(cj , cj′) = dj′ . As cj ⊂ ci, dj ≤ dj . Therefore
D(cj , cj′) ≤ di.

If cj′ ⊂ cj , a similar reasoning may be used.

If cj
⋂

cj′ = ∅, there exists ck ∈ C such that cj ⊂ ck, cj′ ⊂ ck, and
∀cl ∈ C, cl ⊂ ck ⇒ ¬(cj ⊂ cl and cj′ ⊂ cl). By definition, D(cj , cj′) =
dk. Or, as ci ∈ C, cj ⊂ ci, and cj′ ⊂ ci, by definition of ck, ck ⊂ ci .
Then dk ≤ di. As a conclusion, D(cj , cj′) = dk ≤ di. ut

5.3.2 Classification Generation. Classification generation is
an operation that, given an analysis domain and a compatible analysis
criterion, generates a classification. Classification generation is based
on ultrametric automatic hierarchical classification algorithm (cf. Sec-
tion 1.2.3).

An analysis criterion is not an ultrametric. Analysis criteria only have
to be metrics. However, a path metric – which is an ultrametric – can be
derived from each metric (cf. Section 1.2.4). The path metric derivation
is an operation whose computational complexity in terms of processing
is very high. When the number of domain objects of an analysis domain

26

is n, a function processing all possible paths between two domain objects
can be computed in O(n!) time.
Proof. Consider an analysis domain AD such that card(AD) = n + 2.
Let do1 and do2 denote two domain objects in AD. Let Pdo1,do2 denote
the set of paths from do1 to do2. Then,

card(Pdo1,do2) = n!
n−1∑
p=0

1
(n− p)!

As limn→∞
∑n−1

p=0 = e− 1,

lim
n→∞

card(Pdo1,do2) = lim
n→∞

n!
n−1∑
p=0

1
(n− p)!

' n!(e− 1)

Therefore, a function processing all possible paths between two domain
objects can be computed in O(n!) time. ut
We conclude that the path metric derivation operation cannot be per-
formed directly because of the high complexity of the algorithm.

Another solution to derive ultrametric from metric is based on char-
acteristics of ultrametrics:

Lemma 1.25 In an ultrametric space, all triangles are isosceles.

Proof. Let δ denote an ultrametric on a space A. Let assume that
three elements of A exist, a, b, and c, such that the triangle (a, b, c) is
not isosceles. Assume that δ(a, b) < δ(b, c) < δ(a, c) — other cases are
equivalent to this one by permutation of a, b, and c. Therefore, the
condition δ(a, c) ≤ sup[δ(a, b), δ(b, c)] is not observed. As a conclusion,
the hypothesis that a non isosceles triangle may exist is false. ut
Using this characteristics of ultrametrics, we define the “isoscelization”
operation. The “isoscelization” operation transforms every triangle in
an isosceles triangle in which the three sides s1, s2, and s3 observes the
following: ∀(i, j, k) ∈ [1, 2, 3]3, si ≤ sup[sj , sk].

Definition 1.26 The “isoscelization” operation transforms

a triangle (a, b, c) such that

δ(a, b) = s1

δ(a, c) = s2

δ(b, c) = s3

s1 ≤ s2 ≤ s3

into a triangle (a, b, c), where

 δ(a, b) = s′1 = s1

δ(a, c) = s′2 = s2

δ(b, c) = s′3 = s2

.

Generic HierarchicalClassification Using theSingle-Link Clustering 27

The “isoscelization” operation is illustrated in Figure 1.6. The original
triangle is the one on the left side. The transformed triangle is the one
on the right side. The original triangle is a scalene triangle. After
modification, the longest side – s3 in the figure – is altered so that its
length equals to the length of side s2. Side s2 is the side whose length
is between s1 – the smallest side – and s3 – the longest side.

b

s2=8
s1=4

s3=8
c

a

b

s2=8

s3=10 s1=4
a

c

Figure 1.6. The “isoscelization” operation.

If the “isoscelization” operation is performed on all the triangles ex-
isting in a space A measurable with distance d, all the triangles will be
isosceles. A new distance δ may be then defined on A as follows: the
distance between two elements of A — denoted a1 and a2 — is the length
of the segment a1a2 (in the space in which all triangles are isosceles).

It is worth to emphasize that the new distance δ obtained as ex-
plained above is an ultrametric. The proof is obvious as the constraints
defining an ultrametrics, defined in Section 1.2.3, are observed. Con-
straints 1.6 and 1.7 come directly from properties of the metric d, and
Constraint 1.8 is ensured by the “isoscelization” operation.

The complexity of the ultrametric processing based on the “isosceliza-
tion” operation is smaller than the processing based on path metrics.
The complexity of the proposed algorithm is O(n3).

Lemma 1.27 Given a space A such that card(A) = n, the number of
triangles existing in A equals n(n−1)(n−2)

6 .

Proof. A triangle consists of three points: a, b, and c. There are n
possibilities for the choice of a. There are then n − 1 possibilities for
the choice of b. Finally, there are n − 2 possibilities for the choice of c.
So, there are n(n− 1)(n− 2) triplets in A. Each triangle is counted six
times with permutations: (a, b, c) is the same triangle as (a, c, b), etc.
Therefore, the number of triangles in A equals n(n−1)(n−2)

6 . ut

The following algorithm may be used to perform the “isoscelization” of
space A:

1. segments = orderedListOfAllSegments();
2. isoSegments = new List();
3. nonIsoSegments = orderedListOfAllSegments;

28

4. while (nonIsoSegments.size() !=0) {
5. [a,b]=nonIsoSegments.firstElement();
6. for-each (c in A, c <> a and c <> b) {
7. isoscelization(a,b,c);
8. }
9. isoSegments.add([a,b]);
10. nonIsoSegments.remove([a,b]);
11. nonIsoSegments.sort();
12. }

The complexity of the presented algorithm is O(n3).

Proof. The number of segments in a space whose cardinal is n equals
n(n−1)

2 . For each segment, the loop defined between lines 6 and 8 is exe-
cuted n− 2 times. Therefore, the algorithm complexity is n(n−1)

2 × (n−
2) ' O(n3). ut

5.3.3 Threshold Operation. Lemma 1.24 allows to define
a threshold operation on classifications. The threshold operation pro-
vides various partitions of the analyzed analysis domain according to a
threshold.

Two additional concepts are required to define the threshold opera-
tion: the concept of class contents and the concept of t-max class.

Definition 1.28 The contents of a given class ci of a classification C
is a set of domain objects, denoted Contents(ci).

For atomic classes, the class contents is the class itself,
i.e. Contents(ci) = ci = {MOj , where ∀j, MOj ∈ DA}.

For complex classes, the class contents is the union of contents of
all embedded classes, i.e. Contents(ci) =

⋃
j Contents(cj) with the

notations used in Section 1.5.3.1.

The class contents operation is illustrated in Figure 1.7. The full
classification C is presented in a). Domain objects are represented
by circles. Five domain objects exist in C, denoted a, b, c, d, and
e. Classes are represented by ellipses. Eight classes exist, denoted ci,
where i ∈ [1, . . . , 8]. The “is-embedded-in” relationship is represented
by lines between classes. Classes c2 and c3 are, for instance, embedded
in c1. For atomic classes (ci, where i ∈ [4, . . . , 8]), Contents(ci) is the set
of domain objects contained in ci. Contents(c4) is therefore {a}. When

Generic HierarchicalClassification Using theSingle-Link Clustering 29

c)

a b c

e)

a b c d e

c1

c2 c3

c5 c6 c7 c8c4

a b c d e

a)

b)

a

d)

d e

Figure 1.7. The class contents operation. a) the full classification C;
b) Contents(c4); c) Contents(c2); d) Contents(c3); e) Contents(c1)

a class is a complex class, the class contents is a set of object domains
which is calculated recursively with the Contents() function. Therefore,
Contents(c2) = Contents(c4) ∪ Contents(c5) ∪ Contents(c6) = {a, b, c}.
Contents(c3) = Contents(c7) ∪ Contents(c8) = {d, e}. Finally,
Contents(c1) = Contents(c2) ∪ Contents(c3) = {a, b, c, d, e}.

Definition 1.29 Given t ∈ R+∗, a class ci is a t-max class iff

di ≤ t and ¬(∃cj such that ci ⊂ cj and dj ≤ t)

In the classification presented in Figure 1.8, classes are represented by
ellipses, distances associated with classes are given inside ellipses, “is-
embedded-in” relationship is represented by lines between ellipses. In
this classification example, c2 is a 3-max class: the distance d2 associated
with c2 observes d2 = 3 ≤ t = 3, and there is no class cj such that
c2 ⊂ cj and dj ≤ 3 (the only class that contains c2 is c1, but d1 = 7).
Class c3 is also a 3-max class: the distance d3 associated with c3 observes
d3 = 2 ≤ t = 3, and there is no class cj such that c3 ⊂ cj and dj ≤ 3
(the only class that contains c3 is c1, but d1 = 7).

Definition 1.30 Given a threshold t, the threshold operation Tt creates
a partition Pt of a classification C. Pt is the set of contents of all t-max
classes of C. Formally,

Pt = {Contents(ci), where ci is a t−max class}

Various threshold operation results are illustrated in Figure 1.9. When
t = 0, the partition obtained by the threshold operation is a set of atomic

30

c4 c5 c6 c7 c8

0 0 0 0 0

32

7 c1

c2 c3

Figure 1.8. Classification example

classes. With the classification given in Figure 1.9 a), P0 = P1, because
all 0-max classes are all 1-max classes. Similarly, P5 = P7, because all
5-max classes are 7-max classes.

a b c d e

c d eba

a b c d e

b d ea c

a b c d e

b)

e)

c)

d)

0

2
3

1

5
7a)

Figure 1.9. The threshold operation. a) Classification; b) P1; c) P2; d) P3; e) P7

The threshold provides the granularity of the obtained partition. The
higher the threshold is, the lower the number of classes in the obtained
partition is. In the context of knowledge extraction, this characteristics
of the threshold operation is a key feature as it allows:

various analysis levels; when the threshold is low, the generated
partition consists of many classes, representing a fine-grained anal-
ysis. When the threshold is high, the generated partition con-
sists of a few classes, representing a high-level analysis, giving an
overview of the analyzed facet;

fast focusing on details; starting from a high-level analysis, a user
can select a few classes in the partition which are of special interest.
These classes can further be analyzed in details by the application
of a threshold operation with a lower threshold. The repetition of
this technique allows to focus quickly on interesting details.

Generic HierarchicalClassification Using theSingle-Link Clustering 31

6. Applications
The universality of the ADL language – which is the basis of the

proposed multi-facet analysis mechanism – allows for knowledge extrac-
tion in various areas and according to various criteria. Four knowl-
edge extraction criteria may be distinguished: time-related, structural,
contents-based, and combined.

Time-related knowledge extraction may be used to study the evolution
of datasets and retrieve knowledge related to this evolution. Examples of
time-related knowledge extraction are the study of a stock market evo-
lution, or the analysis of a standardization process. Time-related knowl-
edge extraction requires means of accessing past data, usually provided
by a time-aware database or a content management system (CMS). ADL
accessing these data source are used to model various aspects of a given
time-related dataset. In the case of a stock market study, an ADL may
generate metaObjects modeling the overall evolution of auctions, each
metaObject providing the highest and the lowest values of the auction,
as well as the dynamic of the auction. Auctions may then be classified
according to various criteria, such as their dynamics or the mean value
of their highest and lowest values. Therefore, knowledge concerning the
dynamics of auctions in the stock market may be extracted from the gen-
erated hierarchical classification. Investors can then better understand
the structure of the stock market, and, knowing the time-related behav-
ior of various auctions, invest in a better – at least knowledge-based –
way.

Structural knowledge extraction is based on the structural character-
istics of data. In the case of the Web, structural knowledge extraction
may base on the hypertext characteristics of data. Examples of struc-
tural knowledge extraction are the analysis of data source relevance on
a given topic, or study of the organization of a web site. Structural
knowledge extraction requires means of structure retrieval. ADL tags,
specialized in structure retrieval, may be developed and reused. A tag
retrieving a Web page and the hyperlinks it contains may be used by
many ADFs. In the case of a study of data source relevance, an ADF may
generate metaObjects modeling the the page structure, each metaOb-
ject providing the number of links in a given page, the list of addresses
of these links, and the number of pages having at least one link to this
page. Web pages may then be classified according to various criteria,
such as their “reference” status (the highest number of links to a given
page exists, the highest its “reference” status). Web pages may also

32

be classified according to the number of links to other pages, providing
a classification of web pages to identify resources catalogs. Therefore,
people interested in a given topic may have a faster access to important
informations – “reference” pages – or may identify the pages contain-
ing meta-informations about the given topic. The structural knowledge
extraction allows for identification of main elements in a given dataset.

Contents-based knowledge extraction may be used to study the or-
ganization of datasets in regard to its contents. Examples of contents-
related knowledge extraction are the study of a set of documents to find
main topics, or the classification of documents in regard to their rel-
evance to a given topic. Content-based knowledge extraction requires
means of filtering document contents, so that words with a low informa-
tion quantity – such as “the”, “a”, or “is” – are not taken into account in
the contents of documents. Tags filtering contents may be used by many
ADFs which may model various aspects of a given set of documents. An
ADF may for example generate metaObjects modeling the relevance of a
document to the “physics” topics, each metaObject providing the num-
ber of occurrences of words “physics”, “astrophysics”, and “gravitation”
in a given document and the identifier of the document. Documents may
then be classified according to various criteria, such as their relevance
to the gravitation topic or their relevance to the astrophysics topic. An-
other ADF may generate metaObjects modeling words and the number
of their occurrence of words in the whole set of documents. Words may
then be classified according to their frequency in the set of documents,
allowing for topics extraction. Contents-based knowledge extraction al-
lows for topics retrieval and identification of relevant documents to a
given topic.

Combined knowledge extraction allows for dataset analysis in regard
to mixed criteria: time-related, structural, and contents-based. An ex-
ample of combined knowledge extraction is the study of centers of inter-
est in the JavaTM community in the last five years. A database can be
used to stored web pages from Java-related web sites. An ADF may ex-
tract keywords from the database, another ADF may retrieve web pages
associated with these keywords, and a structural analysis may be per-
formed to retrieve relationships between keywords. Then, a last ADF
may retrieve time-related data associated with the keywords. Finally,
various classifications may be performed on the resulting metaObjects
according to various criteria: center of interests can be classified accord-
ing to the number of occurrence of a given word in the stored Web pages
with a scaling factor implying a highest interest in “new” keywords; an-

Generic HierarchicalClassification Using theSingle-Link Clustering 33

other classification can stress on the structural knowledge retrieval with
an influence of the number of occurrence of a given word, etc. Combined
knowledge extraction provides complex analyses in which many factors
are taken into account.

7. Conclusions
The generic hierarchical classification using the single-link clustering

technique provides a solution to the problem of multi-facet analysis of a
given dataset. The proposed technique may be the basis for knowledge
extraction taking into account various aspects of a given dataset.

Two ideas that are the basis of the generic hierarchical classification
technique are: first, the interests of various users concerning a given
dataset can be different, second, expression of the subject and the criteria
of the analyses must be easily understood be humans and extensible. As
a consequence, the language ADL, used for definition of both the subjects
of the analysis and the criteria, provides uniform means of expressing
the various facets of a dataset to be analyzed.

Various application fields are possible for the generic hierarchical
classification using the single-link clustering: time-related, structural,
contents-based, and combined knowledge extraction. The combined
knowledge extraction takes into account data evolution, structure of a
dataset, and contents, allowing to extract information concerning struc-
tured, time-changing data.

The generic hierarchical classification technique opens new directions
of research. An example is the use of software agents in electronic ne-
gotiations. Using the proposed analysis mechanism, advanced behavior
models can be build for negotiating agents. Psychological and social
models may base on data retrieved from the analysis of various facets
of the negotiation process. An agent may for example have a “collabo-
rative” behavior, i.e. may look for negotiators having similar proposals
to build a group of negotiators in order to increase its weigh in the
negotiation process.

References

[1] Bray T, Hollander D, and Layman A (1999),
Namespaces in XML, W3C Recommendation,
http://www.w3.org/TR/1999/REC-xml-names-19990114/

34

[2] Bray T, Paoli J, Sperberg-McQeen CM, and Maler E (2000), Exten-
sible Markup Language (XML) 1.0 (Second Edition), W3C Recom-
mendation, http://www.w3.org/TR/2000/REC-xml-20001006/

[3] IEEE (1987), IEEE Standard for Binary Floating-Point Arithmetic.
ANSI/IEEE Std. 754-1985. ACM SIGPLAN Notices 22, 2.

[4] International Organization for Standardization (1986), Information
Processing – Text and Office Systems – Standard Generalized Markup
Language (SGML). Tech. Rep. 8879:1986(E), ISO, Geneva, Swissland.

[5] Iwayama M and Tokunaga T (1995), Hierarchical Bayesian Clus-
tering for Automatic Text Classification. In Proceedings of IJCAI-
95, 14th International Joint Conference on Artificial Intelligence,
pp. 1322–1327.

[6] Kohonen T (2001), Self-Organizing Maps, 3rd ed. Information Sci-
ences. Springer-Verlag, New York.

[7] Kohonen T (1990), The Self-Organizing Map. In Proceedings of the
IEEE, vol. 78, pp. 1454–1480.

[8] Picard W (2001), Collaborative Document Edition in a Highly Con-
current Environment. In First International Workshop on Web-Based
Collaboration, at the 12th International Workshop on Database and
Expert Systems Applications, DEXA 2001, pp. 514–518.

[9] Unicode Consortium (2000), The Unicode Standard, Version 3.0.
Addison-Wesley.

