
DynG: Enabling Structured Non-Monolithic Electronic Collaboration

Willy Picard, Thomas Huriaux
Department of Information Technology
The Poznań University of Economics

ul. Mansfelda 4, 60-854 Poznań, Poland
picard@kti.ae.poznan.pl, thomas.huriaux@kti.ae.poznan.pl

Abstract

Existing systems supporting collaboration processes typ-
ically implement a single, fixed collaboration protocol, and
collaboration process takes place inside a single group.
In this paper, we present the DynG prototype which pro-
vides support for multiple collaboration protocols for
non-monolithic collaboration processes, i.e. collabora-
tion processes in which collaboration is spread among
many groups. Collaboration protocols used by the DynG
prototype includes communicative, “acting”, and social as-
pects of collaboration processes, and the introduction
of group actions provides support for group dynam-
ics.

1. Introduction

From prehistoric tribes to trade unions, group structure
has always been at the heart of human activities. Group-
ing their competences, humans are able to achieve great
projects, from pyramids to railroad infrastructure construc-
tion. The keyword for group activities iscollaboration. Col-
laboration is the process of sharing competences to achieve
a common goal.

To a recent past, the collaboration process was limited
by the requirement of a single location. People involved in
a collaboration process needed to meet to exchange infor-
mation. In reality, people are generally spread on large ge-
ographical area. Meetings are difficult to organize, because
of schedule incompatibilities, and costly in terms of time
and money.

Telecommunication networks provide a partial solution
to the former problem. Telecommunication networks let
collaborators be spread over various locations. The use of
telephone allows collaborators to exchange information via
voice communication. Documents can be exchanged via fax
in a graphical format. Local area networks (LAN) are the

basis of electronic information exchange inside enterprises,
while wide area networks (WAN) – in between enterprises.

With the rise of telecommunication networks, collabora-
tion models that rationalize the collaboration process have
been developed. Most of them are document oriented, i.e.
the fundamental object of the collaboration process is one
or more documents. In enterprises’ intranets, collaboration
tools are currently widely used for sharing files, for group
scheduling or for document collaborative writing.

Traditionally, research in electronic support for collabo-
ration has concentrated on collaboration processes confined
inside a single group. Few attention has been accorded to
the case of non-monolithic collaboration processes, i.e. pro-
cesses in which the collaborative activities are spread dy-
namically among potentially many groups. The term “non-
monolithic” is taken from the negotiation vocabulary (see
[9], pp. 4-5, 389-406), where a non-monolithic negotiation
process is a negotiation process in which some parties do
not behave as a unitary decision entity, i.e. a party consist-
ing of many persons with various perceptions and goals.

In the field of computer support for collaborative work
(CSCW), some works have addressed the issue of the group
data organization in a dynamic way [3], the issue of non-
monolithic collaborative document edition [8]. These works
are usually poorly formalized and focus on very limited
applications. In the field of electronic negotiations, some
works addressed the issue of negotiation protocols [1] [2]
[4] [5] [7] [12]. According to [6], a negotiation protocol is
“a formal model, often represented by a set of rules, which
govern software processing, decision-making and commu-
nication tasks, and imposes restrictions on activities through
the specification of permissible inputs and actions”. One
may consider a negotiation protocol as a collaboration pro-
tocol. Works in the field of electronic negotiations are usu-
ally limited to monolithic negotiations, or address a single
user’s point of view and do not provide support for group
collaboration. To our best knowledge, the issue of support
for both structured and non-monolithic collaboration pro-
cesses has never been addressed.



In this paper, we present theDynG (for Dynamic
Groups) prototype which provides support for multi-
ple collaboration protocols for non-monolithic collabo-
ration processes. In section 2, a model for collaboration
protocols integrating communicative, “acting”, and so-
cial aspects is presented, then group actions required to
provide support for group dynamics are introduced. In sec-
tion 3, both the overall architecture and implementation
details of theDynGprototype are described. Section 4 con-
cludes the paper.

2. Structuring Non-Monolithic Collaboration
Processes

In non-monolithic collaborative processes, collaboration
always occurs inside a group. Even when a single collabo-
rator works alone, it may be considered as a group consist-
ing of only herself/himself. Therefore, it may be stated that
a group is a non-empty set of collaborators. An other aspect
of this kind of collaboration is that collaborators are collab-
orating via message exchange. As we would like to struc-
ture non-monolithic collaboration processes, we have to ad-
dress two issues: first, a mechanism to structure collabora-
tion inside a given group has to be proposed, which means
that message exchange has to be structured, second, group
dynamics have to be addressed.

2.1. Collaboration Protocols

Three elements may be distinguished in collaborative
processes: a communicative aspect, an “acting” aspect, and
a social aspect.

Communication is a major component of collaboration
as collaborators need to exchange information to achieve
their common goal [13] [11]. The acting aspect of collab-
oration concerns the fact that collaborators not only ex-
change information to reach their common goal, but also act
to achieve it. Finally, the social aspect of collaborative pro-
cesses concerns relationships among collaborators, the per-
ceptions they have of others collaborators.

Let’s take an example to illustrate the communicative,
acting and social aspects of collaborative processes. Let’s
assume that a parent is reading a fairy tale to her/his child.
They collaborate: their common goal being usually to spend
some pleasant time together. They communicate: the child
may ask why the wolf is so bad at the three little pigs, and
the parent answers, or at least tries. They act: the child may
point the wolf on a picture in the book, the parent turns
pages. The parent and the child are obviously playing dif-
ferent social roles.

The concept ofbehavioral unitcaptures all three aspects
– communicative, acting, and social – of collaborative pro-
cesses.

Behavioral unit a behavioral unit is a triplet
(UserRole, MessageType, Action).

• The UserRole addresses the social aspect. In the
case of the former example, twoUserRoles may be
distinguished:Parent andChild.

• TheMessageType addresses the communicative as-
pect. The introduction of message types allows to
limit ambiguousness of communication [10]. In the
case of the former example, threeMessageTypes
may be distinguished:Question, SureAnswer or
PotentialAnswer. Intentions of the collaborator
can be clearer with an adapted message type. The
message “the wolf is fundamentally bad” may be a
SureAnswer or aPotentialAnswer, depending
on the confidence of the person answering the ques-
tion. In this case, the introduction of the adapted mes-
sage type permits to evaluate the credibility/veracity of
exchanged data.

• TheAction addresses the acting aspect. In the case
of the former example, twoActions may be distin-
guished:PointingTheWolf andTurningPage.

In the proposed model, collaboration processes re-
sult from exchange of behavioral units among collab-
orators. Collaborators are exchanging behavioral units,
sending typed messages and acting, in a given role. Ex-
change of behavioral units causes the evolution of the
group in which collaborators are working: each sent behav-
ioral unit causes a transition of the group from a past state
to a new state.

Transition A transition is a triplet
(BehavioralUnit, SourceState,
DestinationState).

In the case of the former example, let’s define a tran-
sition that may occur after the child has asked a question,
i.e. the group is inWaitingForAnswer state. The tran-
sition leads to theReading state. The behavioral unit in-
volved in the presented transition may be the following:
(Parent, SureAnswer, TurningPage).

It is now possible to definecollaboration protocols,
which may be used to structure collaboration processes.

Collaboration protocol A collaboration protocol con-
sists of a set of transitions, a start state, and a set of termi-
nating states.

One may notice that a protocol is a variant of finite state
machines. A finite state machine (FSM) is usually defined
as “a model of computation consisting of a set of states, a
start state, an input alphabet, and a transition function that
maps input symbols and current states to a next state”. The
set of states of the FSM can be easily deduced from the set
of transitions of the protocol. The start state occurs in both



the FSM and the protocol. The input alphabet of the FSM
is the set of behavioral units which appear in all transitions
of the protocols. Finally, the transition function of the FSM
is defined by the set of transitions of the protocol. The only
difference between FSMs and collaboration protocols is the
existence of terminating states for protocols.

A collaboration protocol is a template definition for a set
of collaboration processes. Using an analogy with object-
oriented programming, one may say that a collaboration
protocol is to a protocol instance what a class is to an ob-
ject. In a given group, a given protocol instance regulates
collaboration among group members.

Protocol instance A protocol instance is a triplet
(Protocol, CurrentState,
UserToRoleMapping).

TheUserToRoleMapping is a function which asso-
ciates aUserRole with a given user.

2.2. Group Dynamics

In non-monolithic collaborative processes, groups
evolve: a collaborator may join or leave an existing group,
a group may split in two or more groups, two or more
groups may merge into a single group. Group dynam-
ics may be modeled by a set ofgroup actions. The follow-
ing group actions have been identified:

• create action: creates a new group;

• join action: adds an author to the set of collabo-
rators of an existing group;

• merge action: creates a new group consisting of
the union of the set of collaborators of at least two
groups;

• end action: deletes an existing group;

• leave action: removes a collaborator from the set
of collaborators of an existing group;

• split action: creates at least two groups from an
existing group and the union of the sets of collabora-
tors of the created groups equals the set of collabora-
tors of the existing group.

Figure 1. Group actions

Group actions are illustrated on Figure 1. Dots represent
collaborators while circles represent groups. One may no-
tice that, as shown on Figure 1 for thesplit andmerge
actions, a given collaborator may participate at a given time
in many groups.

3. The DynG Prototype

3.1. Overall architecture

TheDynG(for Dynamic Groups) prototype is an imple-
mentation of the formerly presented concepts: collaboration
protocols and group actions. It aims at being a platform for
implementation of collaborative systems.

The DynG prototype consists of three parts: theDynG
Core, theDynG Server, and theDynG Client (the term
DynG will be omitted in the rest of the paper to improve
readability). The Core is responsible for the implementa-
tion of the model presented in section 2, and is implemented
using Java. The Server provides a unified XML-based inter-
face to the Core. The introduction of the Server allows to
decouple access to the Core from the Core itself: the Server
is responsible for communication with clients and translates
requests from clients to access to the Core. The Client is re-
sponsible for interaction with the final user and the Server.
Such an architecture allows various communication proto-
cols between clients and the server.

The overall architecture is presented on Figure 2.
Both the Server and the Client are implemented us-
ing Java Servlets. On the client side, each HTTP re-
quest coming from the users’ web browser is passed to
the logic module. The logic module may exchange infor-
mation with the Server via the communication module.
When the logic module has finished its work, it redi-
rects to the GUI module which is responsible for generating
dynamic HTML pages for the final user. The GUI mod-
ule consists of a set of Java Server Pages (JSP).

On the server side, three elements may be distinguished:
the communication module, the Core, and a repository. The
communication model is responsible for translating XML
messages sent via HTTP into calls to the Core. The Core
provides support for collaboration protocols and group ac-
tions. The Core manages the collaboration processes ac-
cording to protocols stored in the repository. In the cur-
rent implementation of theDynG Server, the Xindice na-
tive XML database [14] is used as a repository but it would
be possible to use other storage mechanisms, such as file
systems or relational databases. The repository is responsi-
ble for storing not only information concerning users and
groups, but also known protocols.



Figure 2. Overall architecture of the DynG prototype

3.2. Implementation details

The introduction of protocol instances allows collabora-
tion processes to be structured. At the implementation level,
the introduction of protocol instances allows to restrict the
set of possible behavioral units in a given state of the col-
laboration group. As a consequence, the GUI module must
be highly dynamic as it has to propose to the user only be-
havioral units that are available at the current state and for
the role of the given user. Therefore, depending both on the
role of the user and the current state of the collaboration
process, the graphical user interface (the HTML pages) will
not only be different but also allow a user to perform differ-
ent behavioral units.

First of all, the collaboration module has to be initial-
ized to set the collaboration main protocol, i.e. the proto-
col that rules the collaboration process, to add concerned
users, etc. The HTML page in Figure 3 shows how col-
laboration processes are administrated, and what is needed
for a collaboration process to start. As a remark, collabo-
ration processes take place in “workspaces” in theDynG
prototype. A second page provides an interface to set the
UserToRoleMapping inside the collaboration process,
but only at the top level, i.e. the workspace level.

Once a collaboration process is initialized, a collabora-
tor can login and collaborate with other collaborators of the
collaboration process. The Main page give the collaborator
the list of groups, the group she/he is working on, and the
messages sent to this group. To describe dynamic creation
of the interface, let’s take an example: we assume that the
workspace for a collaboration process has been successfully

Figure 3. Administration web page

created, and that userA has created inside this workspace a
groupG to ask userB information. GroupG will use a ba-
sic protocol consisting of a question followed by an answer.
Group activity can be ended each time the last sent ques-
tion has been answered.

We thus have formally the three following behavorial
units, according to the definition given in section 2.1, i.e.
the triplet
(UserRole, MessageType, Action):



Figure 4. Question and answer protocol in DynG

• AskInformation =
(BasicRole, Question, Asking)

• AnswerQuestion =
(BasicRole, Answer, Answering)

• EndGroup =
(BasicRole, Success, Ending)

And the three following transitions, i.e. triplets
(BehavioralUnit, SourceState,
DestinationState):

• (AskInformation, WaitingForQuestion,
WaitingForAnswer)

• (AnswerQuestion, WaitingForAnswer,
WaitingForQuestion)

• (EndGroup, WaitingForQuestion,
EndState)

To complete the instance of this protocol, we also need a
UserToRole mapping. In this case, there is only one role:

• (UserA, BasicRole)

• (UserB, BasicRole)

On the left side of Figure 4, the user interface is pre-
sented in the case when a question and an answer to the
question have been sent.

As specified in the presented protocol, it is not possi-
ble to answer a question that has already been answered.
When a question has been answered, one may only send
a new question or end the group activity, as we may no-
tice in the “Group Management” part of the graphical in-
terface. Let’s ask for more information, by sending a new
question. The user interface is presented on the right side of

Figure 4. Now that a question has been asked, one may only
answer the question, according to protocol specifications.It
may be noticed that the graphical interface has changed, as
the “Group Management” component is generated accord-
ing to the protocol.

It should be kept in mind that a given protocol rules a
given group, and that various groups may be ruled by dif-
ferent protocols. Therefore, by clicking on the name of an
other group in the group list, we may get abilities to per-
form other behavioral units available in this new working
group, depending on the protocol ruling this group and the
role of the collaborator inside this group.

At last, the “Working on” component of GUI allows col-
laborators to get an overview of the group dynamics, by
presenting both the parents and the children groups of the
working group. The “Working on” component may be use
to browse groups the collaborator belongs to.

4. Conclusions

The introduction of collaboration protocols and
group actions allows to provide computer support to
non-monolithic collaboration processes. To our best knowl-
edge, it is the first model for electronic support for
non-monolithic collaborative processes.

It would be possible to build complex support systems
for complex collaborative processes using the framework
provided by the DynG prototype. The design of systems for
non-monolithic collaboration processes may be resumed in
the following steps: first, the roles involved in the collabo-
ration process have to be identified. Next, the required ac-
tions have to be implemented. Then, message types should
be defined. Therefore, behavioral units may be defined. Fi-
nally, collaboration protocol(s) may be specified.



The presented model could be used in a broad spectrum
of potential applications. The presented model may for in-
stance be applied to non-monolithic negotiations, such as
international negotiations or business-to-business contract
establishment. Another field of applications is the legisla-
tive process in which various political parties, potentially
presenting various opinions, collaborate in order to estab-
lish laws in form of new or modified legal acts. The pre-
sented model could also be used to design support systems
for collaborative documentation edition processes that of-
ten takes place between business actors.

Among future works, it would be interesting to inves-
tigate the possibilities to embed a protocol instance into
another protocol instance. This would allow to modular-
ize protocols, to design protocols using smaller protocols,
to develop “protocol libraries”. Another field which could
be the object of future works is the concept of role. The ad-
dition of relationships between various roles, such as inher-
itance or composition, would be an interesting work to be
done.

References

[1] M. Benyoucef and R. K. Keller. An evaluation of formalisms
for negotiations in e-commerce. InDCW ’00: Proceedings
of the Third International Workshop on Distributed Commu-
nities on the Web, pages 45–54. Springer-Verlag, 2000.

[2] W. Cellary, W. Picard, and W. Wieczerzycki. Web-based
business-to-business negotiation support. InInt. Conference
on Electronic Commerce EC-98, Hamburg, Germany, 1998.

[3] M. Ettorre, L. Pontieri, M. Ruffolo, P. Rullo, and D. Sacca.
A prototypal environment for collaborative work within a
research organization. InDEXA ’03: Proceedings of the
14th International Workshop on Database and Expert Sys-
tems Applications, pages 274–279. IEEE Computer Society,
2003.

[4] P. Hung and J.-Y. Mao. Modeling of e-negotiation activi-
ties with petri nets. InHICSS ’02: Proceedings of the 35th
Annual Hawaii International Conference on System Sciences
(HICSS’02)-Volume 1. IEEE Computer Society, 2002.

[5] G. E. Kersten and G. Lo. Aspire: an integrated negotiation
support system and software agents for e-business negotia-
tion. International Journal of Internet and Enterprise Man-
agement, 1(3), 2003.

[6] G. E. Kersten, S. Strecker, and K. P. Law. Protocols for elec-
tronic negotiation systems: Theoretical foundations and de-
sign issues. In K. Bauknecht, M. Bichler, and B. Pröll, ed-
itors, EC-Web, volume 3182 ofLecture Notes in Computer
Science, pages 106–115. Springer, 2004.

[7] J. B. Kim and A. Segev. A framework for dynamic ebusiness
negotiation processes. InCEC, pages 84–91. IEEE Com-
puter Society, 2003.

[8] W. Picard. Towards support systems for non-monolithic col-
laborative document edition: The document-group-message
model. InDEXA Workshops, pages 266–270. IEEE Com-
puter Society, 2004.

[9] H. Raiffa, J. Richardson, and D. Matcalfe.Negotiation Anal-
ysis, The Science and Art of Collaborative Decision Making.
The Belknap Press of Harvard University Press, 2002.

[10] M. Schoop. An introduction to the language-action perspec-
tive. SIGGROUP Bull., 22(2):3–8, 2001.

[11] M. Schoop, A. Jertila, and T. List. Negoisst: a negotiation
support system for electronic business-to-business negotia-
tions in e-commerce.Data Knowl. Eng., 47(3):371–401,
2003.

[12] M. Schoop and C. Quix. Doc.com: a framework for effec-
tive negotiation support in electronic marketplaces.Comput.
Networks, 37(2):153–170, 2001.

[13] H. Weigand, M. Schoop, A. D. Moor, and F. Dignum. B2b
negotiation support: The need for a communication perspec-
tive. In Group Decision and Negotiation 12, pages 3–29,
2003.

[14] Xindice. http://xml.apache.org/xindice/.


