DYNG: A MULTI-PROTOCOL COLLABORATIVE
SYSTEM

Thomas Huriaux, Willy Picard
Department of Information Technology
The Poznan University of Economics

ul. Mansfelda 4, 60-854 Poznag, Poland

{thomas.huriaux, picard} @kti.ae.poznan.pl

Abstract Existing systems supporting collaboration processes#&jlyiimplement a sin-
gle, fixed collaboration protocol, and collaboration pisxéakes place inside
a single group. In this paper, we present in detailsDigaG prototype which
provides support for multiple collaboration protocols fimn-monolithic collab-
oration processes, i.e. collaboration processes in whataboration is spread
among many groups. Collaboration protocols used byDiyeG prototype in-
cludes communicative, “acting”, and social aspects ofatmlfation processes,
and the introduction of group actions provides support foug dynamics and
helps to structure collaboration processes.

Keywords: CSCW, structured collaboration, non-monolithic colladd@n, collaboration pro-
tocols, group dynamics, communication, social aspectsgcelectronic nego-
tiations

1. Introduction

From prehistoric tribes to trade unions, group structure dievays been at
the heart of human activities. Grouping their competentes)ans are able to
achieve great projects, from pyramids to railroad infiastire construction.
The keyword for group activities isollaboration Collaboration is the process
of sharing competences to achieve a common goal.

To a recent past, the collaboration process was limited eyre¢quirement
of a single location. People involved in a collaborationgess needed to meet
to exchange information. In reality, people are generglhgad on large geo-
graphical area. Meetings are difficult to organize, becafisehedule incom-
patibilities, and costly in terms of time and money.

Telecommunication networks provide a partial solutionhte tormer prob-
lem. Telecommunication networks let collaborators be agprever various
locations. The use of telephone allows collaborators thva@xge information

2

via voice communication. Documents can be exchanged vianfaxgraphi-
cal format. Local area networks (LAN) are the basis of e@ttr information
exchange inside enterprises, while wide area networks (YWAM between
enterprises.

With the rise of telecommunication networks, collabonmatitoodels that ra-
tionalize the collaboration process have been developedst Mdf them are
document oriented, i.e. the fundamental object of the bolation process
is one or more documents. In enterprises’ intranets, cofilon tools are
currently widely used for sharing files, for group schedulor for document
collaborative writing.

Traditionally, research in electronic support for colledt@mn has concen-
trated on collaboration processes confined inside a simglgg Few attention
has been accorded to the case of non-monolithic collalborgtiocesses, i.e.
processes in which the collaborative activities are dyiallyi spread among
potentially many groups. The term “non-monolithic” is takeom the nego-
tiation vocabulary (see [Raiffa et al., 2002], pp. 4-5, 38%), where a non-
monolithic negotiation process is a negotiation processhith some parties
do not behave as a unitary decision entity, i.e. a party stingi of many per-
sons with various perceptions and goals.

In the field of computer support for collaborative work (CSE¥6me works
have addressed the issue of the group data organizationyimsanic way [Et-
torre et al., 2003], the issue of non-monolithic collabivetocument edition
[Picard, 2004]. These works are usually poorly formalizad focus on very
limited applications. In the field of electronic negotiaisy some works ad-
dressed the issue of negotiation protocols [Benyoucef agili<2000] [Cel-
lary et al., 1998] [Hung and Mao, 2002] [Kersten and Lo, 20pkdm and
Segev, 2003] [Schoop and Quix, 2001]. According to [Kersteal., 2004],
a negotiation protocol is “a formal model, often represeérig a set of rules,
which govern software processing, decision-making andnsonication tasks,
and imposes restrictions on activities through the spedifin of permissible
inputs and actions”. One may consider a negotiation prétasa collabora-
tion protocol. Works in the field of electronic negotiatica® usually limited
to monolithic negotiations, or address a single user’s tpofrview and do
not provide support for group collaboration. To our bestdealge, the issue
of support for both structured and non-monolithic collatmn processes has
only been addressed in our previous work [Picard and Huyi2085] [Picard,
2005]. In these two articles, a model for structured colfabon procotols has
been presented. In this paper, the main focus is on a deiésntation of
the prototype implementing the model mentioned above.

In this paper, we present tigynG (for Dynamic Groups) prototype which
provides support for multiple collaboration protocols fam-monolithic col-

DynG: A Multi-Protocol Collaborative System 3

laboration processes. In section 2, the theoretical backgl—i.e our previous
work on a model for collaboration protocols integrating coumicative, “act-
ing”, and social aspects — is presented. Next, the concepttafn is refined
with the introduction of a classification of types of actios section 4, both
the overall architecture and implementation details ofigaG prototype are
described. Next a complete example of the usBwiGto support a collabo-
ration process is detailed. Section 6 concludes the paper.

2. Structuring Non-Monolithic Collaboration Processes

In non-monolithic collaborative processes, collaboradwvays occurs in-
side a group. Even when a single collaborator works alomaait be consid-
ered as a group consisting of only herself/himself. Thegfid may be stated
thata group is a non-empty set of collaborato/n other aspect of this kind of
collaboration is that collaborators are collaboratingmessage exchange. As
we would like to structure non-monolithic collaboratioropesses, we have to
address two issues: first, a mechanism to structure codiiborinside a given
group has to be proposed, i.e. message exchange has todiaerstlysecond,
actions occuring inside a group have to be addressed.

Collaboration Protocols

Three elements may be distinguished in collaborative gsE® a commu-
nicative aspect, an “acting” aspect, and a social aspect.

Communication is a major component of collaboration asbaoltators need
to exchange information to achieve their common goal [Wailget al., 2003]
[Schoop et al., 2003]. The acting aspect of collaboratiarcems the fact that
collaborators not only exchange information to reach theinmon goal, but
also act to achieve it. Finally, the social aspect of collatiee processes con-
cerns relationships among collaborators, the perceptives have of others
collaborators.

Let's take an example to illustrate the communicative ngcéind social as-
pects of collaborative processes. Let's assume that atparezading a fairy
tale to her/his child. They collaborate: their common gagihg usually to
spend some pleasant time together. They communicate: ilterohy ask
why the wolf is so bad at the three little pigs, and the paresinvers, or at
least tries. They act: the child may point the wolf on a pieturthe book, the
parent turns pages. The parent and the child are obvioualyng different
social roles.

The concept obehavioral unitcaptures all three aspects — communicative,
acting, and social — of collaborative processes.

4

Behavioral unit a behavioral unit is a triplet:
(UserRole, MessageType, Action)

» TheUserRoleaddresses the social aspect. In the case of the former
example, twdJserRolesnay be distinguished?arentandChild.

» TheMessageTypaddresses the communicative aspect. The intro-
duction of message types allows to limit ambiguousness wi-co
munication [Schoop, 2001]. In the case of the former example
threeMessageTypesay be distinguishedQuestion SureAnswer
or PotentialAnswer Intentions of the collaborator can be clearer
with an adapted message type. The message “the wolf is funda-
mentally bad” may be &ureAnsweor aPotentialAnswerdepend-
ing on the confidence of the person answering the questidhidn
case, the introduction of the adapted message type peoréteat-
uate the credibility/veracity of exchanged data.

» The Action addresses the acting aspect. In the case of the former
example, twoActionsmay be distinguishedPointingTheWolfand
TurningPage

In the proposed model, collaboration processes result #mamange
of behavioral units among collaborators. Collaboratossexchanging
behavioral units, sending typed messages and acting, inea gole.
Exchange of behavioral units causes the evolution of theggiowhich
collaborators are working: each sent behavioral unit caaseansition
of the group from a past state to a new state.

Transition A transition is a triplet:
(BehavioralUnit, SourceState, DestinationState)

In the case of the former example, let’s define a transitiahriimy occur
after the child has asked a question, i.e. the group WaitingForAn-
swer state. The transition leads to tiReadingstate. The behavioral
unit involved in the presented transition may be the folloyvi(Parent,
SureAnswer, TurningPage)

It is now possible to defineollaboration protocolswhich may be used
to structure collaboration processes.

Collaboration protocol A collaboration protocol consists of a set of transi-
tions, a set of start states, and a set of terminating states.

One may notice that a protocol is a variant of finite state rimash A fi-
nite state machine (FSM) is usually defined as “a model of egatn

DynG: A Multi-Protocol Collaborative System 5

consisting of a set of states, a start state, an input alphabe a transi-
tion function that maps input symbols and current statestexastate”.
The set of states of the FSM can easily be deduced from thd¢ sane
sitions of the protocol. The start state occurs in both theE&d the
protocol. The input alphabet of the FSM is the set of behavionits

which appear in all transitions of the protocols. Finallye transition
function of the FSM is defined by the set of transitions of thaetqcol.

The only difference between FSMs and collaboration prdsoothe
existence of terminating states for protocols.

A collaboration protocol is a template definition for a setallaboration

processes. Using an analogy with object-oriented proghagiynone

may say that a collaboration protocol is to a protocol instawhat a
class is to an object. In a given group, a given protocol mstaegulates
collaboration among group members.

Protocol instance A protocol instance is a triplet:
(Protocol, CurrentState, UserToRoleMapping)

TheUserToRoleMappings a function which associatedserRolewith
a given user.

3. Refining the Concept of Action

Inside a group, many actions can occur, modifying the girecbf this
group, creating new groups, or having no real influence omrthim structure
of the collaboration. Three types of actions have been ikt

1 neutral actions;
2 actions modifying the structure of groups;

3 actions modifying the structure of collaboration proesss

Prior to a description of these three types of actions, titfine the concept
of structure of a group In the later, the structure of a group will refer to a
pair that consists of the set of collaborators within theugrand the mapping
between users and roles.

By analogy, let’s define the conceptsifucture of a collaboration process
In the later, the structure of a collaboration process veifer to a pair that
consists of the set of groups within the collaboration pssaand the mapping
between groups and protocols.

Neutral Actions

Neutral actions have no effect, neither on the structuré@tollaboration,
nor on the structure of the group in which the action is preeds Therefore,

6

different existing groups inside the collaboration pracase not influenced
by these actions. Their structures remain the same, no nenpds created.
Furthermore, the group inside which the action was prockkseps its own
structure unchanged, i.e. the same users with the same roles

In the case of purely communicative behavioral units, iehavioral units
which aim only at exchanging information, associated astishould be neu-
tral ones. However, neutral actions should not be limitethéocase of purely
communicative behavioral units: if a file is modified durig tcollaboration
process via aerdit action, theedit action has no effect on the structure of nei-
ther the collaboration process nor the group.

Actions Modifying the Structure of a Group

As it has already been mentioned, a group is composed of omeoce
users, each of them playing a given role. However, a user raag his/her
role changed during the collaboration process. Actionsiogusuch changes
modify the structure of a group.

A user (1) with a role (2) is giving to a user (3) with a role (4hew role
(5). Therefore, five parameters have to be taken in account:

1 the user executing the action;

2 the role of the user executing the action;

3 the user having his/her role changed;

4 the role of the user having his/her role changed;
5 the newly attributed role.

One may notice that the case in which a user changes his/merobevis just
a special case of the generic one presented above. Indeadj@mallowing a
user to change his/her role is just an action in which theegbf the first and
the third parameters are the same.

Actions Modifying the Structure of a Collaboration Process

The structure of non-monolithic collaborative processesisually highly
dynamic: groups are created and deleted in a dynamic wayupGignamics
is the result of the execution of actions modifying the dtite of the collabo-
ration model: a collaborator may for instance decide to etecan actiorcre-
ateANewGroupTwo kind of actions may be distinguised modifying the struc
ture of a collaboration process: actions may modify either et of groups
— calledgroup actions- or the mapping between groups and protocols — called
protocol dynamic actions

DynG: A Multi-Protocol Collaborative System 7

L]

® . R a (%
e @ @ % Merge @ ®

Create Join erge

]

‘ o

- » [.
End L Leave @ Split %

Figure 1. Group actions

Group Actions. The following group actions have been identified:

m join action: adds at least one collaborator to the set of col&bws of
an existing group;

= quit action: removes at least one collaborator from the set déloota-
tors of an existing group;

= split action: splits an existing group in two or more new groups tied
union of the sets of the collaborators of the created grogpale the set
of collaborators of the existing group;

= mergeaction: creates a new group consisting of the union of thefset
collaborators of at least two groups;

m Createaction: creates new group;

= endaction: deletes an existing group.

These actions are illustrated on Figure 1. Dots represdiabooators while
circles represent groups. One may notice that, as showngne-1 for the
split andmergeactions, a given collaborator may participate at a givere tim
many groups.

Group actions may either modify only the group in which th&aacis pro-
cessed — e.g. thguit action — or involve other groups — e.g. timergeaction.

Protocol Dynamic Actions. This type of action is required in two cases: to
allow a group to change its protocol during the collaboratwocess, and to
design and implement parameterized protocols.

A protocol is parameterized if it may have parameters whadeeg are
specified during the collaboration process. An example ohsa protocol
could be a protocol in which an action is used to specify homyrmaessages
can be sent before going to the next step of the collaboratiocess.

8

4. The DynG Prototype
Overall architecture

TheDynG (for Dynamic Groupsprototype is an implementation of the for-
merly presented concepts: collaboration protocols andretlt aims at being
a platform supporting structured non-monolithic colladi@mm processes.

The DynG prototype consists of three parts: tBynG Core, theDynG
Server, and th®ynG Client (the termDynG will be omitted in the rest of
the paper to improve readability).

The overall architecture is presented on Figure 2.

| Server Chent

Collaboration
Protocols

Logc
Module
Ul
Module

C ommuid cation
Module

C omimu cation
Module

Group Actions

Users & Groups Protocols

Web Browser

Figure 2. Overall architecture of thBynG prototype

DynG Client

The Client is a Java Servlet aiming at providing an interfecéhe users.
Each HTTP request coming from the users’ web browser is gasgbe logic
module. The logic module may exchange information with thev&r via the
communication module. The communication module transld&va objects
created by the user’s request into XML messages to be sem teerver, and
translates the responses from the server, which are alsdlin f&rmat, into
Java objects understandable by the Servlet. When the lagicil® has finished
its work, it redirects to the GUI module which is responsifile generating
dynamic HTML pages for the final user. The GUI module consi$ta set of
Java Server Pages (JSP).

During one request, many XML messages are exchanged betixe=8erver
and the Client. The user may require only information abbatdtate of the

DynG: A Multi-Protocol Collaborative System 9

collaboration, or may perform one action modifying theestatthis collabora-
tion. Each basic request requires one message. For exahmgle distinct re-
guests between the Client and the Server are required to iknehich groups
the user belongs, to get the collaborators inside the grloeipser is working
on and to get the potential actions the user may perform.

DynG Server

Onthe server side, three elements may be distinguishedothmunication
module, the Core, and a repository. The communication neaguksponsible
for translating XML messages received via HTTP from the @liato calls to
the Core, and to create response from Java objects into XMisages to send
back to the Client.

The Core provides support for collaboration protocols awdig actions and
is responsible to maintain the state of the collaboratioistielg users, proto-
cols, groups, etc. The Core manages the collaboration ggeseaccording to
protocols stored in the repository. In the current impletagon of theDynG
Server, the Xindice native XML database [Xindice, 2005] sed as a repos-
itory but it would be possible to use other storage mechasisuch as file
systems or relational databases. The repository is redgerier storing not
only information concerning users and groups, but alsoopa$, exchanged
messages, etc.

The DynG Administration

The introduction of protocols allows collaboration proses to be struc-
tured. At the implementation level, the introduction of fmapl instances al-
lows to restrict the set of possible behavioral units in a&gigtate of a given
group. As a consequence, the GUI module must be highly dymasit has to
display to the user only behavioral units that are availablthe current state
and for his/her role. Therefore, depending both on the rbtaeuser and the
current state of the collaboration process, the grapheat interface (HTML
pages) will be different, allowing him/her to perform diféat behavioral units.

First of all, the collaboration module has to be initializeget the collabora-
tion main protocol, i.e. the protocol that rules the colladtion process, to add
concerned users, etc. The HTML page presented on the lefto§iffigure 3
shows how collaboration processes are administrated, hatisyneeded for a
collaboration process to start. As a remark, collaboragpiatesses take place
in “workspaces” in thddynG prototype. A second HTML page, presented on
the right side of Figure 3 provides an interface to assigasrtd users inside
the collaboration process, but only at the top level, i.¢hatworkspace level.

Once a collaboration process is initialized, a collabaratm login and col-
laborate with other persons involved in the collaboratioocpss.

Figure 3. DynGadministration

5. Example: Election of a University Rector

The goal of the current section is to present the potenti@laiynG to
support a real collaboration process. The collaboratiocgss chosen for this
example is the electoral process of the Rector of a uniyerEite collaboration
process is a slightly simplified version of the process @gsn our university.
To improve readability of this article, and because the comicative facet
of this process is limited (except for the campain), the mgsdypes will be
omitted.

Description of the Electoral Process

The pre-requisite is that candidates for the Rector pasiie known. Then,
the electoral process is composed of three main phasesideangs for the
electoral chamber, votes for the electoral chamber, vatethé Rector. The
two first steps will be fully described below. For the lastpstethe votes for
the Rector — only elected members of the electoral chambeararcerned.

The process will be divided into two protocols: the candides and first
votes steps grouped together, and the second votes in apobh@col. In other
words, the first protocol models the election of the elettdtamber, while the
second one models the election of the Rector by the eleatbaathber.

To assist the collaboration, an agent has been added. Thweasafagent is
considered as a normal user, i.e. it is sending behavioitd aocording to its
role and the voting protocol.

DynG: A Multi-Protocol Collaborative System 11

The voting protocol is graphically represented on Figurevdere rectan-
gles are state, arrows are transition, and tabular arereliffdoehavorial units
associated to a given transition.

Candidatures for the electoral chamber During this step, each employee of
the university may be candidate. But the candidature muptdgosed
by somebody else, which is a candidate or not. Once somelasdyden
presented as a potential candidate, he/she can accept amtieate or
not. When the minimal number of candidates is reached, taetagill
go through a transition going to a similar situation, exdbpt now the
commission manager can decide to stop the candidaturedpanic to
move to the vote for the members of the electoral chamber.

Votes for the electoral chamber During this procedure, each employee, can-
didate or not, may vote for up to the number of candidates tldxed.
This “round” is finished either by the agent when everybody Vated,
or when the commission manager decide it. If enough careidadve
been elected, by reaching a pre-defined majority, then the eonds.
Otherwise a new “round” is started, after the removal of adefned
number of candidates.

The protocol is “tuned” by an action specifying how many mensbthe
electoral chamber consits of and how many candidates ameveshafter each
round of the voting process. This action ip@tocol dynamic action This
action is part of the behavioral unit denot&dt vote specificatioris Figure 4.

During the last step of the vote, each member of the eleatbiehber starts
with the same default role, and can perform only one actiorvote. To be
formally precise, this action is composed of two parts: oag phanges the
“default” role of the voter into a role “voted”, while the smwd part adds one
voice to the chosen Rector candidate.

Use ofDynG to Support the Vote Process

The Main page displays to the collaborator the list of groupe group
she/he is working on, and the messages sent to this group.sifttaion at
the beginning of the electoral processes is shown on theitidtof Figure 5.
In this situation, the only allowed action is to propose adidate, as shown
in the “Group Management” part of the interface. The messggesent the
different steps: the settings of the vote specification dectaindidates already
proposed, with their refusal or acceptance.

Once a candidate has been proposed, no action can be petf@xcept for
the new potential candidate who can either accept or reigéeeh candidature.
This situation is presented on the right part of Figure 5.

12

start]

Set vote specifications
Commission manage

Propose candidatg

2 Propose candidate

Candidate Normal user
T
selectingCandidate waitingAcceptance
\
Accept Refuse
Potential Candidate Potential Candidate
Continue
Agent

Propose candidats

2 Propose candidate

Candidate

Normal user

selectingExtraCandidate

/\
waiting ExtraAcceptancP
-

Accept

Refuse

Potential candidate

Potential candidate

Continue
Commission manage

\ote \ote

voting

Normal user| Candidate

Restart
Agent

Remove not elected
Agent |

Stop vote

Commission manage

Remove not elected

 forceEndRound

Agent

End
Agent

endVo@

Figure 4. Graph representing the electoral protocol

DynG: A Multi-Protocol Collaborative System 13

Figure 5. DynGclient: the candidature period

Figure 6. DynGclient: the vote period

The same situation is repeated until the commission marcgegdes that
there are enough candidates. The voting period then st&&stshown on the
left part of Figure 6, the only action each user can now parf@ to vote.
Once a user decides to vote, she/he then has to choose for siehe will
vote (right part of Figure 6) and then they cannot perform actjon until the
end of the vote.

It should be kept in mind that a given protocol rules a givesugr and that
various groups may be ruled by different protocols. Therefoy clicking on

14

the name of an other group in the group list, a user may getiebito perform
other behavioral units available in the new working grougpehding on the
protocol ruling the group and the role of the collaborat@ide the group.

At last, the “Working on” component of GUI allows collabooed to get
an overview of the group dynamics, by presenting both thergarand the
children groups of the working group. The “Working on” conmgot may be
use to browse groups the collaborator belongs to.

6. Conclusions

The introduction of collaboration protocols and group @usi allows to pro-
vide computer support to non-monolithic collaborationgasses. To our best
knowledge, it is the first model for electronic support fonfraonolithic col-
laborative processes.

It would be possible to build complex support systems for gl collab-
orative processes using the framework provided by the Dyru®type. The
design of systems for non-monolithic collaboration preessmay be resumed
in the following steps: first, the roles involved in the cbltmation process have
to be identified. Next, the required actions have to be implsed. Then,
message types should be defined. Therefore, behavioralmaif be defined.
Finally, collaboration protocol(s) may be specified.

The presented model could be used in a broad spectrum oftjabtappli-
cations. The presented model may for instance be appliedrtenmonolithic
negotiations, such as international negotiations or lessito-business con-
tract establishment. Another field of applications is ttgdiative process in
which various political parties, potentially presentingrieus opinions, col-
laborate in order to establish laws in form of new or modifieglll acts. The
presented model could also be used to design support sykieomdlaborative
documentation edition processes that often take place gumasiness actors.

Among future works, it would be interesting to investigalbe {possibili-
ties to embed a protocol instance into another protocoant®. This would
allow to modularize protocols, to design protocols usingaken protocols,
to develop “protocol libraries”. In the example presentadhis paper, one
may notice that the candidature proposal phase can be seésasprotocol”
which could be reused in other protocols, or even many tin#sma single
protocol.

Another field which could be the object of future works is tloeeept of
role. The addition of relationships between various radegsh as inheritance
or composition, would be an interesting work to be done.

DynG: A Multi-Protocol Collaborative System 15

References

[Benyoucef and Keller, 2000] Benyoucef, M. and Keller, R.(R000). An evaluation of for-
malisms for negotiations in e-commerce. ICW '00: Proceedings of the Third Interna-
tional Workshop on Distributed Communities on the Weges 45-54. Springer-Verlag.

[Cellary et al., 1998] Cellary, W., Picard, W., and Wieczaikd, W. (1998). Web-based
business-to-business negotiation supportintnConference on Electronic Commerce EC-
98, Hamburg, Germany.

[Ettorre et al., 2003] Ettorre, M., Pontieri, L., Ruffolo,.MRullo, P., and Sacca, D. (2003). A
prototypal environment for collaborative work within aeasch organization. IDEXA '03:
Proceedings of the 14th International Workshop on DatatsaskExpert Systems Applica-
tions pages 274-279. IEEE Computer Society.

[Hung and Mao, 2002] Hung, P. and Mao, J.-Y. (2002). Modelig-negotiation activities
with petri nets. InHICSS '02: Proceedings of the 35th Annual Hawaii InternaibCon-
ference on System Sciences (HICSS’'02)-VolurnteEIE Computer Society.

[Kersten and Lo, 2003] Kersten, G. E. and Lo, G. (2003). Aspin integrated negotiation
support system and software agents for e-business negotiainternational Journal of
Internet and Enterprise Managemea(3).

[Kersten et al., 2004] Kersten, G. E., Strecker, S., and lawp. (2004). Protocols for elec-
tronic negotiation systems: Theoretical foundations aesigh issues. In Bauknecht, K.,
Bichler, M., and Pell, B., editors,EC-Weh volume 3182 ofLecture Notes in Computer
Sciencepages 106-115. Springer.

[Kim and Segev, 2003] Kim, J. B. and Segev, A. (2003). A frameunfor dynamic ebusiness
negotiation processes. CEC, pages 84-91. IEEE Computer Society.

[Picard, 2004] Picard, W. (2004). Towards support systesnsibn-monolithic collaborative
document edition: The document-group-message moddDEXA Workshopspages 266—
270. IEEE Computer Society.

[Picard, 2005] Picard, W. (2005). Towards support systemnsidbn-monolithic electronic ne-
gotiations.Special Issue of the Journal of Decision Systems on e-Neigois To appear.
[Picard and Huriaux, 2005] Picard, W. and Huriaux, T. (20@)ng: Enabling structured non-
monolithic electronic collaboration. Ifhe 9th International Conference on CSCW in De-

sign Coventry, UK. To appear.

[Raiffa et al., 2002] Raiffa, H., Richardson, J., and MdkeaD. (2002).Negotiation Analysis,
The Science and Art of Collaborative Decision Makinghe Belknap Press of Harvard
University Press.

[Schoop, 2001] Schoop, M. (2001). An introduction to theglaage-action perspectiv&lG-
GROUP Bull, 22(2):3-8.

[Schoop et al., 2003] Schoop, M., Jertila, A., and List, Q). Negoisst: a negotiation sup-
port system for electronic business-to-business negmimin e-commerceData Knowl.
Eng, 47(3):371-401.

[Schoop and Quix, 2001] Schoop, M. and Quix, C. (2001). Dan.ca framework for effective
negotiation support in electronic marketplac€amput. Networks37(2):153-170.

[Weigand et al., 2003] Weigand, H., Schoop, M., Moor, A. hdd@ignum, F. (2003). B2b
negotiation support: The need for a communication persgectin Group Decision and
Negotiation 12pages 3-29.

[Xindice, 2005] Xindice (2005). http://xml.apache.ongytice/.

