
DynG: A Protocol-Based Prototype for

Non-Monolithic Electronic Collaboration

Willy Picard and Thomas Huriaux

Department of Information Technology
The Poznań University of Economics

ul. Mansfelda 4, 60-854 Poznań, Poland
picard@kti.ae.poznan.pl, thomas.huriaux@kti.ae.poznan.pl

Abstract. Existing systems supporting collaboration processes typi-
cally implement a single, fixed collaboration protocol, and collabora-
tion process takes place inside a single group. In this paper, we present
the DynG prototype which provides support for multiple collaboration
protocols for non-monolithic collaboration processes, i.e. collaboration
processes in which collaboration is spread among many groups, having
different protocols depending on what the group is aimed at. Collabo-
ration protocols used by the DynG prototype integrate communicative,
“acting”, and social aspects of collaboration processes and must be se-
mantically and structurally valid.

1 Introduction

From prehistoric tribes to trade unions, group structure has always been at
the heart of human activities. Grouping their competences, humans are able to
achieve great projects, from pyramids to railroad infrastructure construction.
The keyword for group activities is collaboration. Collaboration is the process of
sharing competences to achieve a common goal.

To a recent past, the collaboration process was limited by the requirement of
a single location. People involved in a collaboration process needed to meet to
exchange information. In reality, people are generally spread on large geographi-
cal area. Meetings are difficult to organize, because of schedule incompatibilities,
and costly in terms of time and money.

Telecommunication networks provide a partial solution to the former prob-
lem. Telecommunication networks let collaborators be spread over various lo-
cations. The use of telephone allows collaborators to exchange information via
voice communication. Documents can be exchanged via fax in a graphical for-
mat. Local area networks (LAN) are the basis of electronic information exchange
inside enterprises, while wide area networks (WAN) – in between enterprises.

With the rise of telecommunication networks, collaboration models that ra-
tionalize the collaboration process have been developed. Most of them are doc-
ument oriented, i.e. the fundamental object of the collaboration process is one
or more documents. In enterprises’ intranets, collaboration tools are currently



widely used for sharing files, for group scheduling or for document collaborative
writing.

Traditionally, research in electronic support for collaboration has concen-
trated on collaboration processes confined inside a single group. Few attention
has been accorded to the case of non-monolithic collaboration processes, i.e.
processes in which the collaborative activities are spread dynamically among
potentially many groups. The term “non-monolithic” is taken from the negoti-
ation vocabulary (see [1], pp. 4-5, 389-406), where a non-monolithic negotiation
process is a negotiation process in which some parties do not behave as a unitary
decision entity, i.e. a party consists of many persons with various perceptions and
goals.

In the field of computer support for collaborative work (CSCW), some works
have addressed the issue of the group data organization in a dynamic way [2],
the issue of non-monolithic collaborative document edition [3]. These works are
usually poorly formalized and focus on very limited applications. In the field
of electronic negotiations, some works addressed the issue of negotiation proto-
cols [4] [5] [6] [7] [8] [9]. According to [10], a negotiation protocol is “a formal
model, often represented by a set of rules, which govern software processing,
decision-making and communication tasks, and imposes restrictions on activities
through the specification of permissible inputs and actions”. One may consider a
negotiation protocol as a collaboration protocol. Works in the field of electronic
negotiations are usually limited to monolithic negotiations, or address a single
user’s point of view and do not provide support for group collaboration. To our
best knowledge, the issue of support for both structured and non-monolithic
collaboration processes has never been addressed.

In this paper, we present the DynG (for Dynamic Groups) prototype, already
introduced in [11], which provides support for multiple collaboration protocols
for non-monolithic collaboration processes. In section 2, a model for collaboration
protocols assigned to every single group is presented, including the integrated
communicative, “acting”, and social aspects as well as the structural and se-
mantic validity of these protocols. In section 3, both the overall architecture and
implementation details of the DynG prototype are described. Section 4 concludes
the paper.

2 Structuring Non-Monolithic Collaboration Processes

In non-monolithic collaborative processes, collaboration always occurs inside a
group. Even when a single collaborator works alone, it may be considered as a
group consisting of only herself/himself. Therefore, it may be stated that a group

is a non-empty set of collaborators. An other aspect of this kind of collabora-
tion is that collaborators are collaborating via message exchange. As the global
collaboration is always divided into many small collaboration processes, we will
only address the mechanism to structure these processes into a given group as
well as the validity of this mechanism. The interaction between different groups
with different protocols is not the subject of this paper.



2.1 Collaboration Protocols

Three elements may be distinguished in collaborative processes: a communicative
aspect, an “acting” aspect, and a social aspect.

Communication is a major component of collaboration as collaborators need
to exchange information to achieve their common goal [12] [13]. The acting aspect
of collaboration concerns the fact that collaborators not only exchange informa-
tion to reach their common goal, but also act to achieve it. Finally, the social
aspect of collaborative processes concerns relationships among collaborators, the
perceptions they have of others collaborators.

Let’s take an example to illustrate the communicative, acting and social
aspects of collaborative processes. Let’s assume that a parent is reading a fairy
tale to her/his child. They collaborate: their common goal being usually to spend
some pleasant time together. They communicate: the child may ask why the wolf
is so bad at the three little pigs, and the parent answers, or at least tries. They
act: the child may point the wolf on a picture in the book, the parent turns
pages. The parent and the child are obviously playing different social roles.

The concept of behavioral unit captures all three aspects – communicative,
acting, and social – of collaborative processes.

Behavioral unit A behavioral unit is a triplet (UserRole, MessageType,
Action).
– The UserRole addresses the social aspect. In the case of the former

example, two UserRoles may be distinguished: Parent and Child.
– The MessageType addresses the communicative aspect. The introduc-

tion of message types limits ambiguousness of communication [14]. In
the case of the former example, three MessageTypes may be distin-
guished: Question, SureAnswer or PotentialAnswer. Intentions
of the collaborator can be clearer with an adapted message type. The
message “the wolf is fundamentally bad” may be a SureAnswer or a
PotentialAnswer, depending on the confidence of the person answer-
ing the question. In this case, the introduction of the adapted message
type permits to evaluate the credibility/veracity of exchanged data.

– The Action addresses the acting aspect. In the case of the former ex-
ample, two Actions may be distinguished: PointingTheWolf and
TurningPage.

In the proposed model, collaboration processes result from exchange of be-
havioral units among collaborators. Collaborators are exchanging behavioral
units, sending typed messages and acting, in a given role. Exchange of be-
havioral units causes the evolution of the group in which collaborators are
working: each sent behavioral unit causes a transition of the group from a
past state to a new state.

Transition A transition is a triplet (BehavioralUnit, SourceState, Des-
tinationState).
In the case of the former example, let’s define a transition that may occur
after the child has asked a question, i.e. the group is in WaitingForAn-
swer state. The transition leads to the Reading state. The behavioral unit



involved in the presented transition may be the following: (Parent, Sure-
Answer, TurningPage).
It is now possible to define collaboration protocols, which may be used to
structure collaboration processes.

Collaboration protocol A collaboration protocol consists of a set of transi-
tions, a start state, and a non-empty set of terminating states.
One may notice that a protocol is a variant of finite state machines. A
finite state machine (FSM) is usually defined as “a model of computation
consisting of a set of states, a start state, an input alphabet, and a transition
function that maps input symbols and current states to a next state”. The
set of states of the FSM can be easily deduced from the set of transitions of
the protocol. The start state occurs in both the FSM and the protocol. The
input alphabet of the FSM is the set of behavioral units which appear in
all transitions of the protocols. Finally, the transition function of the FSM
is defined by the set of transitions of the protocol. The differences between
FSMs and collaboration protocols is the existence of terminating states for
protocols and the possibility to have many transitions from one initial state
leading to the same destination state. The later difference is enabled by the
previous definition of behavioral unit.
A collaboration protocol is a template definition for a set of collaboration
processes. Using an analogy with object-oriented programming, one may say
that a collaboration protocol is to a protocol instance what a class is to an
object. In a given group, a given protocol instance regulates collaboration
among group members.

Protocol instance A protocol instance is a triplet (Protocol, Current-
State, UserToRoleMapping).
The UserToRoleMapping is a function which associates a UserRole
with a given user.

2.2 Protocol Validity

The former definitions specify the basic requirements to structure collaboration
inside a group. However, this definition must be completed by conditions to be
fulfilled by a protocol to be valid, both structurally and semantically.

Structural validity A protocol is structurally valid iff:

– there is a path from the starting state to all states,
– there is a path from every state to an end state,
– from a given state s and a given behavioral unit bu, there is at most one

transition associated with bu and starting from s.

The first condition ensures that each state can be reached and therefore is
really a part of the protocol, even if this state can be optional.
The second condition ensures that there is no locking state, i.e. that we
cannot reach a state that prevents the collaboration process from being ter-
minated.



The last condition ensures that no ambiguity exists in a group protocol. If a
single behavioral unit leads from one state to at least two other states, it is
not possible to decide which state has to be reached when the given behav-
ioral unit is triggered. However, this condition does not limit the number of
transitions starting from a given state.
These different conditions can be validated with algebraic tools from the
graph theory. The basic tool is the adjacency matrix, which is, in the case
of a collaboration protocol, the matrix where the entry aij is the number of
transitions between the states i and j. The properties of adjacency matrices
simplify the verification of the structural validity of protocols.

Semantical validity A protocol is semantically valid iff:
– all transitions leading to ending states are associated with behavioral

units containing an ending action,
– behavioral units containing an ending action are associated only with

transitions leading to ending states.
An ending action is an action which, when executed in a group, ends the life
of the group. It means that no other action can be executed after this action,
so no message can be sent to this group. Therefore, no other transition can
be passed through after the execution of such an action.
The first condition ensures that when an end states is reached, the group
has already been terminated during the last transition.
The second condition ensures that the group is not terminated by passing
through a transition that does not lead to an ending state.

A more formal presentation of both structural and semantic validities of
collaboration protocols can be found in [15].

3 The DynG Prototype

3.1 Overall architecture

The DynG (for Dynamic Groups) prototype is an implementation of the for-
merly presented concepts. It aims at being a platform for implementation of
collaborative systems.

The DynG prototype consists of three parts: the DynG Core, the DynG

Server, and the DynG Client (the term DynG will be omitted in the rest of the
paper to improve readability). The Core is responsible for the implementation
of the model presented in section 2, and is implemented using Java. The Server
provides a unified XML-based interface to the Core. The introduction of the
Server decouples access to the Core from the Core itself: the Server is responsible
for communication with clients and translates requests from clients to access to
the Core. The Client is responsible for interaction with the final user and the
Server. Such an architecture enables various communication protocols between
clients and the server.

The overall architecture is presented on Figure 2. Both the Server and the
Client are implemented using Java Servlets. On the client side, each HTTP



Fig. 1. Overall architecture of the DynG prototype

request coming from the users’ web browser is passed to the logic module. The
logic module may exchange information with the Server via the communication
module. When the logic module has finished its work, it redirects to the GUI
module which is responsible for generating dynamic HTML pages for the final
user. The GUI module consists of a set of Java Server Pages (JSP).

On the server side, three elements may be distinguished: the communication
module, the Core, and a repository. The communication model is responsible for
translating XML messages sent via HTTP into calls to the Core. The Core pro-
vides support for collaboration protocols and group actions. The Core manages
the collaboration processes according to protocols stored in the repository. In the
current implementation of the DynG Server, the Xindice native XML database
[16] is used as a repository but it would be possible to use other storage mecha-
nisms, such as file systems or relational databases. The repository is responsible
for storing not only information concerning users and groups, but also known
protocols.

3.2 Implementation details

The introduction of protocol instances allows collaboration processes to be struc-
tured. At the implementation level, the introduction of protocol instances enables
the restriction of the set of possible behavioral units in a given state of the col-
laboration group. As a consequence, the GUI module must be highly dynamic
as it has to propose to the user only behavioral units that are available at the
current state and for the role of the given user. Therefore, depending both on the
role of the user and the current state of the collaboration process, the graphical
user interface (the HTML pages) will not only be different but also allow a user
to perform different behavioral units.



First of all, the collaboration module has to be initialized to set the collabora-
tion main protocol, i.e. the protocol that rules the collaboration process, to add
concerned users, etc. The HTML page in Figure 3 shows how collaboration pro-
cesses are administrated, and what is needed for a collaboration process to start.
As a remark, collaboration processes take place in “workspaces” in the DynG

prototype. A second page provides an interface to set the UserToRoleMap-
ping inside the collaboration process, but only at the top level, i.e. the workspace
level.

Fig. 2. Administration web page

Once a collaboration process is initialized, a collaborator can login and col-
laborate with other collaborators of the collaboration process. The Main page
gives the collaborator the list of groups, the group she/he is working on, and the
messages sent to this group.

To illustrate the concepts of the former model, e.g. behavioral units, as well
as the mechanism of dynamic creation of the graphical user interface, one of the
protocols supported by DynG will be presented as an example. In this example,
the workspace for a collaboration process has been successfully created, and
user A has created inside this workspace a group G to ask user B information.
Group G is ruled by a basic protocol modeling a sequence of pairs (question,
answer). Group activity can be terminated each time the last sent question has
been answered.

We thus have formally the four following behavioral units, according to the
definition given in section 2.1, i.e. the triplet (UserRole, MessageType, Ac-
tion):

– AskInformation = (BasicRole, Question, Asking)



Fig. 3. Question and answer protocol in DynG

– AnswerQuestion = (ExpertRole, Answer, Answering)
– EndGroup = (BasicRole, Success, Ending)
– EndGroupExpert = (ExpertRole, Success, Ending)

And the four following transitions, i.e. triplets (BehavioralUnit, Source-
State, DestinationState):

– (AskInformation, WaitingForQuestion, WaitingForAnswer)
– (AnswerQuestion, WaitingForAnswer, WaitingForQuestion)
– (EndGroup, WaitingForQuestion, EndState)
– (EndGroupExpert, WaitingForQuestion, EndState)

To complete the instance of this protocol, we also need a UserToRole map-
ping. In this case, two roles exist:

– (UserA, BasicRole)
– (UserB, ExpertRole)

This protocol is both semantically and structurally valid, according to the
definitions given in 2.2.

The system provides support for protocol validity: it returns a failure code if
an administrator tries to add an invalid – either semantically or structurally –
protocol. In such a case, the invalid protocol is rejected by the system. There-
fore, it is impossible to create groups ruled by invalid protocols. Support for
protocol validity ensures that all groups in the DynG prototype are ruled by
valid protocols.

On the left side of Figure 3, the user interface is presented in the case when
a question and an answer to the question have been sent.

As specified in the presented protocol, it is not possible to answer a question
that has already been answered. When a question has been answered, one may
only send a new question or end the group activity, as we may notice in the



“Group Management” part of the graphical interface. Let’s ask for more infor-
mation, by sending a new question. The user interface is presented on the right
side of Figure 3. Now that a question has been asked, one may only answer the
question, according to protocol specifications. It may be noticed that the graph-
ical interface has changed, as the “Group Management” component is generated
according to the protocol.

It should be kept in mind that a given protocol rules a given group, and that
various groups may be ruled by different protocols. Therefore, by clicking on the
name of a different group in the group list, we may get abilities to perform other
behavioral units available in this new working group, depending on the protocol
ruling this group and the role of the collaborator inside this group.

At last, the “Working on” component of GUI allows collaborators to get an
overview of the group dynamics, by presenting both the parents and the children
groups of the working group. The “Working on” component may be use to browse
groups the collaborator belongs to.

4 Conclusions

The introduction of multiple collaboration protocols attributed to many groups
enables computer support for non-monolithic collaboration processes. Our con-
tributions are (1) a formal model for collaboration protocols, which integrates
communicative, acting, and social aspects of the collaboration, and (2) the defi-
nition of criteria that protocols have to fulfill to be valid, both structurally and
semantically. To our best knowledge, it is the first model for electronic support
for non-monolithic collaborative processes.

It would be possible to build complex support systems for complex collab-
orative processes using the framework provided by the DynG prototype. The
design of systems for non-monolithic collaboration processes may be resumed in
the following steps: first, the roles involved in the collaboration process have to
be identified. Next, the required actions have to be implemented. Then, message
types should be defined. Therefore, behavioral units may be defined. Finally,
collaboration protocol(s) may be specified.

The presented model could be used in a broad spectrum of potential ap-
plications. The presented model may for instance be applied to non-monolithic
negotiations, such as international negotiations or business-to-business contract
establishment. Another field of applications is the legislative process in which
various political parties, potentially presenting various opinions, collaborate in
order to establish laws in form of new or modified legal acts. The presented model
could also be used to design support systems for collaborative documentation
edition processes that often takes place between business actors.

Among future works, it would be interesting to investigate the possibilities
to embed a protocol instance into another protocol instance. This would en-
able modular protocols, to design protocols using smaller protocols, to develop
“protocol libraries”. Another field which could be the object of future works is



the concept of role. The addition of relationships between various roles, such as
inheritance or composition, would be an interesting work to be done.

References

1. Raiffa, H., Richardson, J., Matcalfe, D.: Negotiation Analysis, The Science and
Art of Collaborative Decision Making. The Belknap Press of Harvard University
Press (2002)

2. Ettorre, M., Pontieri, L., Ruffolo, M., Rullo, P., Sacca, D.: A prototypal envi-
ronment for collaborative work within a research organization. In: DEXA ’03:
Proceedings of the 14th International Workshop on Database and Expert Systems
Applications, IEEE Computer Society (2003) 274–279

3. Picard, W.: Towards support systems for non-monolithic collaborative document
edition: The document-group-message model. In: DEXA Workshops, IEEE Com-
puter Society (2004) 266–270

4. Benyoucef, M., Keller, R.K.: An evaluation of formalisms for negotiations in e-
commerce. In: DCW ’00: Proceedings of the Third International Workshop on
Distributed Communities on the Web, Springer-Verlag (2000) 45–54

5. Cellary, W., Picard, W., Wieczerzycki, W.: Web-based business-to-business nego-
tiation support. In: Int. Conference on Electronic Commerce EC-98, Hamburg,
Germany (1998)

6. Hung, P., Mao, J.Y.: Modeling of e-negotiation activities with petri nets. In:
HICSS ’02: Proceedings of the 35th Annual Hawaii International Conference on
System Sciences (HICSS’02)-Volume 1, IEEE Computer Society (2002)

7. Kersten, G.E., Lo, G.: Aspire: an integrated negotiation support system and soft-
ware agents for e-business negotiation. International Journal of Internet and En-
terprise Management 1 (2003)

8. Kim, J.B., Segev, A.: A framework for dynamic ebusiness negotiation processes.
In: CEC, IEEE Computer Society (2003) 84–91

9. Schoop, M., Quix, C.: Doc.com: a framework for effective negotiation support in
electronic marketplaces. Comput. Networks 37 (2001) 153–170

10. Kersten, G.E., Strecker, S., Law, K.P.: Protocols for electronic negotiation systems:
Theoretical foundations and design issues. In Bauknecht, K., Bichler, M., Pröll,
B., eds.: EC-Web. Volume 3182 of Lecture Notes in Computer Science., Springer
(2004) 106–115

11. Picard, W., Huriaux, T.: DynG: Enabling structured non-monolithic electronic
collaboration. In: Proceedings of the Ninth International Conference on Computer
Supported Cooperative Work in Design, Coventry, UK (2005) 908–913

12. Weigand, H., Schoop, M., Moor, A.D., Dignum, F.: B2b negotiation support: The
need for a communication perspective. In: Group Decision and Negotiation 12.
(2003) 3–29

13. Schoop, M., Jertila, A., List, T.: Negoisst: a negotiation support system for elec-
tronic business-to-business negotiations in e-commerce. Data Knowl. Eng. 47

(2003) 371–401
14. Schoop, M.: An introduction to the language-action perspective. SIGGROUP Bull.

22 (2001) 3–8
15. Picard, W.: Towards support systems for non-monolithic electronic negotiations.

the contract-group-message model. Journal of Decision Systems 13 (2004) 423–440
Special issue on “Electronic Negotiations: Models, Systems and Agents”.

16. Xindice: http://xml.apache.org/xindice/


