
An Algebraic Algorithm
for Structural Validation of Social Protocols

Willy Picard

Department of Information Technology,
The Poznań University of Economics,

ul. Mansfelda 4, 60-854 Poznan, Poland,
picard@kti.ae.poznan.pl,

WWW home page: http://www.kti.ae.poznan.pl

Abstract. Support for human-to-human interactions over a network is
still insufficient. In this paper a model for human-to-human collaboration
based on the concept of social protocol is presented and formalized. Then,
semantical and structural validity of social protocols is defined. Next, an
algebraic representation of social protocols is proposed. Based on this
algebraic representation of social protocols, an algorithm for structural
validation of social protocols is proposed and illustrated by three exam-
ples.

Keywords: collaboration modeling, algebraic representation of social
protocols, semantical validation, structural validation.

1 Introduction

Enterprises are constantly increasing their efforts in order to improve their busi-
ness processes, which may be explained by the fact that enterprises are exposed
to a highly competitive global market. Among the most visible actions associated
with this effort towards a better support for better business processes, one may
distinguish the current research works concerning Web services and associated
standards: high-level languages such as BPEL or WS-Coordination take the ser-
vice concept one step further by providing a method of defining and supporting
workflows and business processes.

However, most of these actions are directed towards interoperable machine-
to-machine interactions over a network. Support for human-to-human interac-
tions over a network is still insufficient and many research has to be done to
provide both theoretical and practical knowledge to this field.

Among various reasons for the weak support for human-to-human interac-
tions, two reasons may be distinguished: first, many social elements are involved
in the interaction among humans. An example of such a social element may be
the roles played by humans during their interactions. Social elements are usually
difficult to model, e.g. integrating non-verbal communication to collaboration
models. Therefore, their integration to a model of interaction between humans

is not easy. A second reason is the adaptation capabilities of humans which are
not only far more advanced than adaptation capabilities of software entities, but
also are not taken into account in existing models for collaboration processes.

A model for human-to-human interactions which addresses, at least to some
extent, the two characteristics of the interactions between humans is therefore
needed. Such a model has already been presented in [1,2]. This model is based
on the concept of social protocol which may be seen as a model of collaboration
processes. A collaboration process may be modelled as a social protocol which
describes the potential interactions of collaborators within this process.

In the case of complex collaboration processes, the design of a social proto-
col modeling these processes may be a complex task. A social protocol may be
designed with errors potentially leading to unachievable collaboration processes,
i.e. processes in which collaborators are locked and cannot continue their collab-
oration. Therefore, some techniques to check the validity of social protocols are
needed.

In this paper, the concept of validity of social protocols is defined. Then, an
algorithm for structural validation of social protocols is detailed. This algorithm
is based on an algebraic representation of social protocols.

The rest of this paper is organized as follows. In Sect. 2, the concept of social
protocol, used to model collaboration processes, is presented. Section 3 then
expands on the definition of the concepts of semantical and structural validity of
social protocols. Next, an algorithm for structural validation of social protocols
is proposed in Sect. 4, and illustrated by three examples in Sect. 5. Then, related
works are reviewed in Sect. 6. Finally, Section 7 concludes this paper.

2 Modeling Collaboration Processes as Social Protocols

A social protocol aims at modeling a set of collaboration processes, in the same
way as as a class models a set of objects in object-oriented programming. In other
words, a social protocol may be seen as a model which instances are collaboration
processes. Social protocols model collaboration at a group level. The interactions
of collaborators are captured by social protocols. Interactions are strongly related
with social aspects, such as the role played by collaborators. The proposed model
integrates some of these social aspects, which may explain the choice of the term
social protocols.

2.1 Formal Model of Social Protocols

Before social protocols may be formally defined, others concepts must first be
defined.

Definition 1. A role is a label. Let denote R the set of roles.

In a given group, a set of roles is played by the collaborators, which means
that collaborators are labeled, are associated with given roles. The set of roles
Rp for a given protocol p is a subset of R, i.e. Rp ⊆ R. Collaborators usually

play different roles within a given collaboration process. Roles may be associated
with collaborators to specify the way they should interact with the rest of the
group. Interactions among collaborators are modeled with the concept of action
type.

Definition 2. An action type is an interface of a software entity. Let denote A
the set of action types.

An action may be for instance the execution of a web service, a commit
to a CVS repository, the sending of an email. Within a group, collaborators
are interacting by executing actions. The execution of actions is a part of the
common knowledge of the group, i.e. all collaborators are aware of the execution
of an action by one of the members of the group. An action type may be seen
as a description of a given action, providing the name and type of parameters
required to execute the action as well as the type of the result returned by the
action execution.

Definition 3. A behavioral unit is a pair (role, action type). Let denote BU
the set of potential behavioral units. Formally, BU = R×A.

The concept of behavioral unit comes from the idea that the behavior of a
collaborator is to a large extent determined by the role he/she plays. Therefore,
roles and action types have to be associated to determine the behavior, i.e. the
set of actions that a collaborator playing a given role can perform.

A behavioral bu = (r, a) is said to be executed iff a collaborator labeled with
the role r executes the action of the given type a. It should be notice that only
collaborators labeled with the role r can execute the behavioral unit bu = (r, a).

Definition 4. A state is a label associated with a given situation in a collabo-
rative process. Let denote S the set of states.

In a given protocol p, the set of states that may occur Sp is a subset of S, i.e
Sp ⊆ S.

Definition 5. A transition is a triplet (bu, ssource, sdestination). Let denote T the
set of transitions. Formally, T = BU × S × S.

In a given protocol p, the set of transitions Tp is a subset of T , i.e Tp ⊆ T .
Now that all concepts underlying social protocols have been formally pre-

sented, the concept of social protocol may be defined.

Definition 6. A social protocol is a finite state machine. A social protocol
consists of

{
Sp, Sp

start, Sp
end, Rp, Ap

}
where Sp

start ⊂ Sp is the set of start-

ing states, Sp
end ⊂ Sp is the set of ending states, Sp

start ∩Sp
end = ∅. Let denote

P the set of social protocols.

In a social protocol, collaborators are moving from state to state via the exe-
cution of behavioral units. In other words, the execution of behavioral units are
transition conditions. As mentioned before, a behavioral unit may be executed
only by a collaborator labeled with the appropriate role.

An extended definition of social protocols have been presented in [1]. An
application of social protocols to electronic negotiations may be found in [3].

2.2 An Example of Social Protocol

The example of social protocol which is presented in this section is oversimplified
for readability reasons. It is obvious that social protocols modeling real-world
collaboration processes are usually more complex. The chosen collaboration pro-
cess to be modeled as a social protocol may be described as follows: a set of
users are collaborating on the establishment of a “FAQ” document. Some users
only asks questions, while others, referred as “experts”, may answer the ques-
tions. Other users, referred as “managers”, may interrupt the work on the FAQ
document. The work on the document may be terminated either by a success
(the document has been written and the manager estimates that its quality is
good enough to be published) or by a failure (the users did not find any way to
collaborate and the manager has estimated that the work on the FAQ should be
interrupted).

A possible social protocol modeling this collaboration process is presented in
Fig. 1.

Fig. 1. An example of social protocol

In Fig. 1, five states s1, . . . , s5 are represented as circles. State s1 is a starting
state, states s4 and s5 are ending states. The following states are defined:

– state s1: waiting for a first question;
– state s2: waiting for an answer;
– state s3: waiting for a next question;
– state s4: failed termination;
– state s5: successful termination.

Transitions are represented as arrows, and the line style is associated with the
role of the users that may execute a given transition. Continuous line style is used
to represent transitions that may be executed by “normal users”, fine-dashed
style for transitions that may be executed by “experts”, and fine-dotted style for
transitions that may be executed by “managers”. Transitions are summarized in
Table 1.

Table 1. Transitions for the example of social protocol

Source state Destination state Role Action

s1 s2 Normal Ask question
s2 s3 Expert Answer question
s2 s3 Expert Suppress question
s2 s4 Manager Failure ending
s3 s2 Normal Ask question
s3 s4 Manager Failure ending
s3 s5 Manager Successful ending

3 Social Protocol Validity

Before the conditions for social protocol validity are presented, the concept of
social protocol validity should be defined. Two kinds of social protocol valid-
ity may be distinguished: a social protocol may be semantically valid and/or
structually valid. Finally, a social protocol is valid iff it is both semantically and
structurally valid.

3.1 Semantical Validity

A given social protocol is semantically valid iff

1. all transitions leading to an ending state are associated with behavioral units
whose actions end the collaboration;

2. no transition leading to a non-ending state is associated with behavioral
units whose actions end the collaboration.

The first condition ensures that each transition leading to an ending state
actually ends the collaboration. The second condition ensures that the collabo-
ration cannot be “interrupted” by a transition leading to a non-ending state.

The semantical validity of a given social protocol may be relatively easily
checked: 1) all behavioral units associated with transitions leading to an ending
state should contain only ending actions; 2) all behavioral units containing end-
ing actions should be associated only with transitions leading to ending states.

3.2 Structural Validity

A given social protocol is structurally valid iff

1. for each non-starting state s, it exists at least one path from one starting
state to the state s;

2. for each non-ending state s, it exists at least one path from the state s to an
ending state;

3. for each state s and each behavioral unit bu, it exists at most one transition
from the state s associated with the behavioral unit bu.

The first condition ensures that each state is reachable, i.e. there is no state to
which one may not move to from a starting state. The second condition ensures
that there is no state from which one may not move to an ending state. The third
condition ensures that there is no “ambiguity” in a protocol. An ambiguity may
occur in a protocol in the case when it exists many transitions associated to a
common behavioral unit, leading from a given state to various states. In such a
protocol, the execution of the “shared” behavioral unit may not be performed
as it is then impossible to decide which state should be the next one.

While the third condition may be relatively easily checked, checking that the
first and second conditions are fulfilled is a more complex task which requires
more advanced algorithms.

4 Structural Validation of Social Protocols

In this section, an algorithm for structural validation of social protocols is pre-
sented. This algorithm is based on an algebraic representation of social protocols.

4.1 Algebraic Representation of Social Protocols

Any social protocol may be represented in an algebraic form as a transition
matrix. The formal definition of the transition matrix requires the definition of
the concepts of sorted states list and set of local behavioral units.

A sorted states list Σp for a given protocol p is a list containing once all states
of the protocol p and such that the first states of the list are starting states of
the protocol and the last states of the list are ending states.

Definition 7. A sorted states list for a given protocol p is a list Σp = {σi ∈ Sp}
with i ∈ {1, . . . , |Sp|} such that:

– Sp ∩Σp = ∅,
– ∀(i, j) ∈ {1, . . . , |Sp|}2, i = j ⇔ σi = σj,
– ∃(a, b) ∈ {1, . . . , |Sp|}2, 1 ≤ a < b ≤ |Sp| and

∀x ∈ [1, a], σx ∈ Sp
start,

∀x ∈]a, b[, σx ∈ Sp −
(
Sp

start ∪ Sp
end

)
,

∀x ∈ [b, |S − p|], σx ∈ Sp
end.

A set of local behavioral units βp
s,s′

for a given protocol p is the set of
behavioral units associated with a transition from state s to s′. Let denote βp

S

the set of sets of local behavioral units.

Definition 8. A set of local behavioral units from s to s′ is a set βp
s,s′

= bus,s′

such that:

– ∀bus,s′ ∈ βp
s,s′

, bus,s′ ∈ BUp,
– ∀bus,s′ ∈ βp

s,s′
,∃t ∈ Tp such that t = (bus,s′

, s, s′).

Sorted states lists and sets of local behavioral units are required to build a
transition matrix. A transition matrix Θp is an |Sp|×|Sp| matrix which elements
are sets of local behavioral units laid out according to a sorted states list.

Definition 9. A transition matrix Θp is an |Sp| × |Sp| matrix such that
Θp : {1, . . . , |Sp|} × {1, . . . , |Sp|} → βp

S , Θp[ij] = βp
σi,σj .

The elements of a transition matrix are sorted according to a sorted states
list, i.e. the first columns and rows are related with starting states, while last
columns and rows are related with ending states. Each element of a transition
matrix is a set of local behavioral unit for a given source state (in row) and a
given destination state (in column).

A transition cardinality matrix Θp,|| may be easily computed from a tran-
sition matrix. A transition cardinality matrix is an |Sp| × |Sp| matrix which
elements are the cardinality of sets of local behavioral units laid out according
to a sorted states list.

Definition 10. A transition cardinality matrix Θp,|| is an |Sp| × |Sp| matrix
such that Θp,|| : {1, . . . , |Sp|} × {1, . . . , |Sp|} → IN, Θp,||[ij] = |βp

σi,σj |.

Each element of a transition cardinality matrix is the number of transitions
from the source state (in row) to the destination state (in column).

4.2 State Reachability Computation

The reachability of a state s′ from state s in a protocol p means that there is
a list of transitions in p connecting state s to state s′. To formally define the
concept of reachability, let’s first introduce the concept of path.

A path πp
s,s′

from the state s to the state s′ is a list of transitions connecting
s to s′.

Definition 11. A path from the state s to the state s′, denoted πp
s,s′

, is such
that πp

s,s′
= 〈s1, t1, s2, t2, . . . , sn−1, tn−1, sn〉 with

– s1 = s,
– sn = s′,
– ∀i ∈ [1, n− 1], tn = (bun, sn, sn+1).

The length of a path is defined as the number of its transitions.
A state s′ is reachable from state s in a given protocol p iff it exists at least

one path from state s to state s′.

Definition 12. A state s′ is n-reachable from s iff it exists at least one path of
length n from s to s′.

The n-reachability of a state s from state s′ means that there is a list of
exactly n transitions connecting s to s′. Let πs,s′

p,||=n denote the number of paths
of length n from s to s′ in protocol p.

Definition 13. A path cardinality matrix Πp is an |Sp|× |Sp| matrix such that

Πp =
|Sp|−1∑
n=1

Θn
p,||

The path cardinality matrix contains information about the reachability of
states: each element of the path cardinality matrix is the number of paths from
the source state (in row) to the destination state (in column).

Theorem 1. A state sj is reachable from si iff Πp[ij] 6= 0.

Proof. The transition cardinality matrix contains information about the 1-reacha-
bility of states. As Θp,||[ij] = |βp

σi,σj |, each element of the transition cardinality
matrix is the number of transitions from the source state (in row) to the desti-
nation state (in column), i.e. the number of path of length 1.

The number of paths of length 2 may be calculated on the basis of the
transition cardinality matrix. Let s, s′, and s′′ be three states. The number of
paths of length 2 from the state s to the state s′ through the state s′′ equals
the number of paths of length 1 from the state s to the state s′′ multiplied by
the number of paths of length 1 from the state s′′ to the state s′. Therefore, the
number of paths of length 2 from the state s to the state s′ equals the sum of
the number of paths of length 2 from the state s to the state s′ through any
state s′′ ∈ Sp. Formally,

πs,s′

p,||=2 =
|Sp|∑
i=1

πs,si

p,||=1.π
si,s

′

p,||=1

One may recognize in the former equation the classical multiplication of
matrices. Moreover, as π

si,sj

p,||=1 = |βp
σi,σj | = Θp,||[ij], it may be concluded that

πs,s′

p,||=2 = Θ2
p,||[ij]. Therefore, each element of the Θ2

p,|| matrix is the number of
paths of length 2 from a source state (in row) to a destination state (in column).

In a similar way, it may be demonstrated that each element of the Θn
p,|| matrix

is the number of paths of length n from a source state (in row) to a destination
state (in column).

The reachability of states in a protocol p with |Sp| states may be deduced from
the logical sum of n-reachability where n ∈ [1, |Sp| − 1]. Indeed, the reachability

of a given state s from a state s′ means the existence of at least one path from
s′ to s. Moreover, the longest path going through all states only once has a
maximal length of |Sp| − 1. Therefore, a state s is reachable from state s′ iff it
exists at least one path from state s′ to s, of length less or equal to |Sp| − 1, i.e.
Πp[ij] 6= 0 ut

.

4.3 Algorithm for Structural Validation

For a given protocol p, conditions 1. and 2. presented in Sect. 3.2 may be checked
with the following algorithm:

1. Sort the states s ∈ S from starting states to ending ones as a sorted states list
Σp = {σi ∈ Sp} with i ∈ {1, . . . , a, . . . , b, . . . , |Sp|} such that ∀i ∈ [1, . . . , a],
σi are starting states, and ∀i ∈ [b, . . . , |Sp|] , σi are ending states;

2. Compute the transition cardinality matrix Θp,|| according to the sets of local
behavioral units and the sorted states list Σp;

3. Compute the path cardinality matrix Πp,|| =
|Sp|−1∑
n=1

Θn
p,||;

4. Condition 1. is fulfilled ⇔ ∀j ∈]a, |Sp|],∃i ∈ [1, a] such that Πp,||[ij] > 0.
5. Condition 2. is fulfilled ⇔ ∀i ∈ [1, b[,∃j ∈ [b, |Sp|] such that Πp,||[ij] > 0.

5 Examples of Structural Validation

In this section, the validity of three protocols is checked to illustrate the alge-
braic representation of social protocols and the algorithm presented above. In
the presented examples, it is assumed that the protocols are semantically valid
and that they fulfill the third condition for structural validity. For the three pro-
tocols, conditions 1. and 2. for structural validity are checked with the algorithm
presented in Sect. 4.3.

In all presented protocols, the states are assumed to be already sorted to
improve the readability of the paper. Therefore, the first step of the algorithm
for structural validation may be skipped.

5.1 Example of Valid Social Protocol

In Fig. 2, a first example of social protocol is presented. Starting states – σ1

and σ2 – are represented by a double circle, while ending states – σ5 and σ6 are
represented by a bold circle. Transitions are represented as arrows.

For the protocol presented in Fig. 2, the transition cardinality matrix is the
following one:

Θp,|| =

0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

Fig. 2. Example of valid social protocol

As the protocol contains six states, the path cardinality matrix Πp,|| is the
sum of the powers of the transition cardinality matrix from power 1 to power 5,
i.e Πp,|| =

∑|Sp|−1
n=1 Θn

p,|| =
∑5

n=1 Θn
p,|| = Θp,|| + Θ2

p,|| + . . . + Θ5
p,||

By a simple computation, Πp,|| =

0 0 2 0 2 0
0 0 1 1 1 1
0 0 0 0 1 0
0 0 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

In Fig. 3, the area of the path cardinality matrix to be checked for the first

condition of structural validity is highlighted. This area consists of all elements
whose row number is lower or equal than a = 2 and whose column number is
greater than a = 2. If in each column of this area it exists at least one element
whose value is greater than 0, the first condition is fulfilled. In this first protocol,
the first condition is fulfilled.

Πp,|| =

0 0 2 0 2 0
0 0 1 1 1 1

0 0 0 0 1 0
0 0 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

Fig. 3. Area to be check for the first condition of structural validity

In Fig. 4, the area of the path cardinality matrix to be checked for the second
condition of structural validity is highlighted. This area consists of all elements
whose row number is lower than b = 5 and whose column number is greater or
equal to b = 5. If in each row of this area it exists at least one element whose
value is greater than 0, the second condition is fulfilled. In this first protocol,
the second condition is fulfilled.

Πp,|| =

0 0 2 0 2 0
0 0 1 1 1 1
0 0 0 0 1 0
0 0 1 0 1 1

0 0 0 0 0 0
0 0 0 0 0 0

Fig. 4. Area to be check for condition 2. of structural validity

5.2 Example of a Social Protocol Violating the First Condition

In Fig. 5, a second example of social protocol is presented. This protocol is
similar to the protocol presented in Sect. 5.1. The only difference is that the
transition from state σ2 now leads to σ1 instead of σ4.

Fig. 5. Example of a social protocol violating the first condition

For the protocol presented in Fig. 5, the transition cardinality matrix is the
following one:

Θp,|| =

0 0 2 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

By a simple computation, Πp,|| =

0 0 2 0 2 0
1 0 2 0 2 0
0 0 0 0 1 0
0 0 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

As it may easily be notice on Fig. 5, this protocol does not fulfill the first

condition of structural validity because states σ4 and σ6 are unreachable from
the starting states. The analyzis of the path transition matrix leads to the same

conclusion: in the area to be checked for the fist condition, the only value for
states σ4 and σ6 is 0.

5.3 Example of a Social Protocol Violating the Second Condition

In Fig. 6, a third example of social protocol is presented. This protocol is similar
to the protocol presented in Sect. 5.1. The only difference is that the transition
to state σ5 now comes from σ4 instead of σ3.

Fig. 6. Example of a social protocol violating the second condition

For the protocol presented in Fig. 6, the transition cardinality matrix is the
following one:

Θp,|| =

0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

By a simple computation, Πp,|| =

0 0 2 0 0 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

As it may easily be notice on Fig. 6, this protocol does not fulfill the second

condition of structural validity because no ending state may be reached from
states σ1 and σ3. The analyzis of the path transition matrix leads to the same
conclusion: in the area to be checked for the second condition, the only value for
states σ1 and σ3 is 0.

6 Related Works

As process modeling is concerned, many works have already been conducted
in the research field of workflow modeling and workflow management systems.

Many works [4,5,6,7,8,9,10,11] have focused on formal models and conditions
under which a modification of an existing – and potentially running – work-
flow retains workflow validity. However, to our best knowledge, current works
concerning workflow adaptation focus on interactions the importance of social
aspects, are not or insufficiently taken into account by these works.

Some interesting works have been done in the field of electronic negotiations
to model electronic negotiations with the help of negotiation protocols. In [12], it
is stated in that, in the field of electronic negotiations, “the protocol is a formal
model, often represented by a set of rules, which govern software processing,
decision-making and communication tasks, and imposes restrictions on activities
through the specification of permissible inputs and actions”. One may notice the
similarity with the concept of social protocol. The reason for this fact is that the
model presented in this paper was originally coming from a work on protocols
for electronic negotiations [13]. However, to our knowledge, none of the works
concerning negotiation protocols provides mechanisms for protocol validation.
Moreover, these works are by nature limited to the field of electronic negotiations
which is just a subset of the field of human collaboration.

7 Conclusions

While many works are currently done on modeling collaboration processes in
which software entities (agents, web services) are involved, modeling collabora-
tion processes in which mainly humans are involved is an area that still requires
much attention from the research community. Some of the main issues to be
addressed are the social aspects of collaboration and the adaptation capabilities
of humans. In this paper the first issue is addressed. The concept of social pro-
tocol aims at being a start of answer to the question of computer support for
social collaboration. The algorithm for structural validation of social protocols
presented in this paper provides protocol designers and/or software supporting
social protocol with means of checking the validity of social protocols, which
leads to more robust support for social protocols.

The main innovations presented in this paper are 1) the algebraic represen-
tation of social protocols , 2) the algorithm for structural validation of social
protocols based on their algebraic representation. The proposed concepts have
been fully implementated in the DynG protocol [14], a social protocol-based
platform.

The validation of social protocols is a requirement for 1) the design of robust
collaboration models, 2) more advanced support for human-to-human collabo-
ration. Among advanced features, the adaptation of social protocol – i.e. the
possibility to modify a collaboration process and its associated social protocol
at run-time – is necessary to weaken constraints usually limiting the interac-
tion between collaborators, so that the adaptation capabilities of humans may
be integrated in the life of a social protocol. With support of social protocol
adaptation, methods for validation of adapted social protocols extending the
algorithm presented in this paper are still to be proposed.

References

1. Picard, W.: Computer support for adaptive human collaboration with negotiable
social protocols. In Abramowicz, W., Mayr, H.C., eds.: Proc. of the 9th Interna-
tional Conference on Business Information Systems. Volume 85 of LNI., GI (2006)
90–101

2. Picard, W.: Modeling structured non-monolithic collaboration processes. In
Camarinha-Matos, L., Afsarmanesh, H., Ortiz, A., eds.: Collaborative Networks
and their Breeding Environments, Proc. of the 6th IFIP Working Conference on
Virtual Enterprises (PRO-VE 2005), Valencia, Spain, Springer (September 2005)
379–386

3. Picard, W.: Towards support systems for non-monolithic electronic negotiations.
the contract-group-message model. Journal of Decision Systems: Special Issue on
Electronic Negotiations - Models, Systems and Agents 13 (2004) 423–439

4. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1) (1998) 21–66

5. van der Aalst, W.M.P., Basten, T., Verbeek, H.M.W., Verkoulen, P.A.C., Voorho-
eve, M.: Adaptive workflow: On the interplay between flexibility and support. In
Filipe, J., ed.: Proc. of the 1st International Conference on Enterprise Information
Systems. Volume 2., Setúbal, Portugal, Kluwer Academic Publishers (March 1999)
353–360

6. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using
petri-net-based techniques. In Aalst, W., Desel, J., Oberweis, A., eds.: Business
Process Management, Models, Techniques, and Empirical Studies. Volume 1806 of
Lecture Notes in Computer Science., Springer (2000) 161–183

7. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Information Systems 25(2) (2000) 117–134

8. Sadiq, S.W., Orlowska, M.E., Sadiq, W., Foulger, C.: Data flow and validation in
workflow modelling. In Schewe, K.D., Williams, H.E., eds.: Proceedings of the 15th

Australasian Database Conference, ADC 2004. Volume 27 of CRPIT., Australian
Computer Society (2004) 207–214

9. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process
constraints for flexible workflows. Information Systems 30(5) (2005) 349–378

10. ter Hofstede, A.H.M., Orlowska, M.E., Rajapakse, J.: Verification problems in
conceptual workflow specifications. Data Knowledge Engineering 24(3) (1998)
239–256

11. ter Hofstede, A.H.M., Orlowska, M.E., Rajapakse, J.: Verification problems in
conceptual workflow specifications. In Thalheim, B., ed.: Conceptual Modeling -
ER’96, 15th International Conference on Conceptual Modeling, Cottbus, Germany,
October 7-10, 1996, Proceedings. Volume 1157 of Lecture Notes in Computer Sci-
ence., Springer (1996) 73–88

12. Kersten, G.E., Strecker, S.E., Lawi, K.P.: Protocols for electronic negotiation
systems: Theoretical foundations and design issue. In: Proc. of the 5th Conference
on Electronic Commerce and Web Technologies (ECWeb04), Sarragoza, Spain,
IEEE Computer Society (2004)

13. Picard, W., Huriaux, T.: Dyng: A protocol-based prototype for non-monolithic
electronic collaboration. Lecture Notes in Computer Science 3865(CSCW in De-
sign 2005) (2006) 41–50

14. Huriaux, T., Picard, W.: Dyng: a multi-protocol collaborative system. In Fun-
abashi, M., Grzech, A., eds.: Proc. of the 5th IFIP International Conference on

e-Commerce, e-Business, and e-Government (I3E 2005), Poznań, Poland (2005)
591–605

	An Algebraic Algorithm for Structural Validation of Social Protocols
	Willy Picard
	Introduction
	Modeling Collaboration Processes as Social Protocols
	Formal Model of Social Protocols
	An Example of Social Protocol

	Social Protocol Validity
	Semantical Validity
	Structural Validity

	Structural Validation of Social Protocols
	Algebraic Representation of Social Protocols
	State Reachability Computation
	Algorithm for Structural Validation

	Examples of Structural Validation
	Example of Valid Social Protocol
	Example of a Social Protocol Violating the First Condition
	Example of a Social Protocol Violating the Second Condition

	Related Works
	Conclusions

